Nuclear Data Sheets xx, 1 (****)

Nuclear Data Sheets for A=182*

BALRAJ SINGH AND JOEL C. ROEDIGER

Department of Physics and Astronomy, McMaster University Hamilton, Ontario L8S 4M1, Canada.

(Received ****)

Abstract: Nuclear spectroscopic information for known nuclides of mass number 182 (Lu,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg,Tl,Pb) with Z=71 to 82 and N=111 to 100 have been evaluated and presented together with adopted energies and J π of levels in these nuclei. No excited state data are yet available for ¹⁸²Lu, while only limited structure information is available for ¹⁸²Pb and ¹⁸²Tl. Rotational band structures are known for ¹⁸²Hg and ¹⁸²Au but spin-parity assignments remain largely tentative. The decays of ¹⁸²Lu, ¹⁸²Hg, ¹⁸²Au and ¹⁸²Tl are not well established. The ¹⁸²Hf isotope is of geophysical and astrophysical interest. This evaluation supersedes previous full evaluations of A=182 published by 1988Fi05 and 1975Sc13, and a selected (mainly high-spin) update of A=182 published by 1995Si04.

Cutoff Date: Literature available up to March 18, 2008, has been consulted.

- General Policies and Organization of Material: See the January issue of the *Nuclear Data Sheets* or http:// www.nndc.bnl.gov /nds/NDSPolicies.pdf.
- **General Comments:** The statistical analysis of γ -ray data and deduced level schemes is carried out through computer codes available at NNDC, BNL website: www.nndc.bnl.gov. The direct feedings to excited states in β^- and ε decays have generally been computed from I(γ +ce) intensity balances at each level; the associated log *ft* values are calculated using LOGFT code. The total internal conversion coefficients corresponding to assigned multipolarities and mixing ratios are theoretical values calculated using BrIcc code. A general 1.5% uncertainty is assumed in quoted theoretical internal conversion coefficients. All Q values have been adopted from 2003Au03. The static magnetic and quadrupole moments are from 1989Ra17 and 2005St24 when available. Relevant data for A=186 isotopes which decay by α decay to A=182 isotopes are taken primarily from A=186 NDS (2003Ba44).
- Acknowledgements: The evaluators thank McMaster students Scott Geraedts, Michelle Lee, George Reed and Jordan Chenkin for compilation of several datasets for A=182 nuclides some of which are in the XUNDL database.

*This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, and by the Office of Nuclear Physics, Office of Science, Department of Energy of the United States.

		IIIdex IOI F	<u>102</u>		
<u>Nuclide</u> Page	Data Type	Page	Nuclide	Data Type	
¹⁸² ₇₁ Lu ₁₁₁ ¹⁸² ₇₂ Hf ₁₁₀	Skeleton Scheme for A=182 Adopted Levels Adopted Levels, Gammas 182 Lu β^- decay (2.0 min) 182 Hf IT decay (61.5 min) 180 Hf(t,p) 180 Hf(136 Xe, 134 Xe γ) 180 Hf(238 Ll 236 Ll γ)	3 6 7 9 11 12 13		${}^{176} Yb({}^{13}C,\alpha 3n\gamma)$ ${}^{180} Hf(\alpha,2n\gamma)$ ${}^{180} W(t,p)$ ${}^{182} W(\gamma,\gamma):Mossbauer$ ${}^{182} W(\gamma,\gamma')$ ${}^{182} W(e,e')$ ${}^{182} W(n,n'\gamma)$ ${}^{182} W(n,n'\gamma)$	59 66 69 70 70 71 72 76
$^{182}_{74}\mathrm{W}_{108}$	Adopted Levels, Gammas ¹⁸² Ta β^- decay (114.43 d) Muonic atom ¹⁸² Re ε decay (64.0 \hbar) ¹⁸² Re ε decay (12.7 \hbar) ¹⁸⁶ Os α decay ¹⁷⁶ Yb(⁹ Be,3n γ)	15 36 44 44 52 57 57		¹⁸² W(p,p'),(pol p,p'),(α,α') ¹⁸² W(d,d') Coulomb excitation ¹⁸³ W(d,t) ¹⁸³ W(³ He,α) ¹⁸⁴ W(p,t) ¹⁸⁶ W(n,5nγ)	76 76 77 79 80 81 82

Index for A=182

Skeleton Scheme for A=182

Skeleton Scheme for A=182 (continued)

Adopted Levels

 $Q(\beta^{-})=4180 SY; S(n)=5210 SY; S(p)=8320 SY; Q(\alpha)=-190 SY 2003Au03$

Estimated uncertainties (2003Au03): $\Delta Q(\beta^{-})=200$, $\Delta S(n)=360$, $\Delta S(p)=\Delta Q(\alpha)=450$.

¹⁸²Lu isotope produced and identified by 1982Ki04 at GSI facility using reactions: $W(^{136}Xe,X)$ and $Ta(^{136}Xe,X)$ E=9 MeV/nucleon, followed by mass separation. Measured $T_{1/2}$, γ and β radiations from ¹⁸²Lu decay to ¹⁸²Hf.

¹⁸²Lu Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	_	2.0 min 2	%β-=100 .
			E(level): the 2.0-min activity is assumed to belong to the g.s.
			$T_{1/2}$: from timing of β rays, K x ray, and two γ rays (1982Ki04).
			$L = (2.4 \text{ G})^{-1} + (2.4 $

 $J\pi: \leq 4$ from possible β feeding of 2+ state in ¹⁸²Hf. Shell model configuration (for spherical case): $\pi h_{11/2} vi_{13/2}$ suggests negative parity.

Adopted Levels, Gammas

 $\begin{array}{ll} Q(\beta^-)=375\ 6;\ S(n)=6718\ 6;\ S(p)=8610\ SY;\ Q(\alpha)=1215\ 12 & 2003Au03\\ \Delta S(p)=300\ (estimated,2003Au03). \\ \ ^{182} Hf\ produced\ in\ ^{180} Hf(2n,\gamma)\ (1961Ar07,1961Hu01,1961Na03,\ 1961Wi09,1971He13). \\ Structure\ calculations:\ 2001Oi03,\ 2000Xu03. \\ \ ^{186} W\ could,\ in\ principle,\ undergo\ \alpha\ decay\ to\ ^{182} Hf.\ Recent\ studies\ by\ 2004Co26,\ 2003Bi13,\ 2003Da05,\ 2003Ce01\ and\ 1997Ge15\ have\ established\ upper\ limit\ for\ T_{1/2}(\alpha)\ for\ ^{186} W\ as\ \geq 8.2x10^{21}\ y\ (2004Co26)\ with\ 90\%\ confidence\ limit. \end{array}$

¹⁸²Hf Levels

Cross Reference (XREF) Flags

- ¹⁸²Lu β^- decay (2.0 min) D ¹⁸⁰Hf(¹³⁶Xe,¹³⁴Xe γ) ¹⁸²Hf IT decay (61.5 min) E ¹⁸⁰Hf(²³⁸U,²³⁶U γ) А
- В
- ¹⁸⁰Hf(t,p) С

Nuclear Level Sequences

- g.s. band. А
- В $K\pi = (8-)$ band. Configuration = $\pi 7/2[404] \otimes \pi 9/2[514]$.

Seq.	E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
A	0.0	0+‡	8.90×10 ⁶ y 9	ABCDE	$%\beta$ -=100. T _{1/2} : from 2004Vo16 (also 2005Vo17,specific activity technique using two independent methods). Others: 9×10 ⁶ y 2 (1961Wi09), 8.5×10 ⁶ y (1961Hu01), 8.0×10 ⁶ y 5 (1961Na03). Other: 1961Ar07. (<r<sup>2>)^{1/2}=5.348 fm 4 (2004An14, evaluation). Δ<r<sup>2>(¹⁸²Hf-¹⁸⁰Hf)=0.048 fm² 4 (1994An14,1994An09).</r<sup></r<sup>
А	97.79 9	2+‡		ABCDE	
A	322.17 14	$(4+)^{\frac{1}{4}}$		ABCDE	
А	666.2/1/ 81843	$(6+)^*$ (1.2+)		BCDE	$I\pi$: γ to $0+$
	905.9 5	(1,2+)		A	$J\pi$: γ to 2+.
	1022 3			С	
	1034 3	(0+)		C	$J\pi: L(t,p)=(0).$
A B	1122.07 18	$(8+)^{*}$	61.5 min 15	B DE	%IT-46 2
D	11/2.07 10	(0)	01.5 1111 15	0 00	$\%\beta$ -=54 2.
					J π : systematics, probable configuration= $\pi 7/2[404]\pi 9/2[514]$; K π =8- (1974Wa14,1999Da09). Theoretical calculations (2000Xu03) predict 8- isomer in ¹⁸² Hf. T _{1/2} : from 1974Wa14. Others: 65 min 5, 68 min 4 (1971Wa09).
	1265 3	(0+)		С	2006AV01: cross section measurement in $\frac{1}{2}$ w (n,n α) at 14.72-14.88 MeV. $I\pi$: L(t,p)=(0).
В	1419.5 5	(9-) [#]		DE	
	1465			С	
	1497 <i>3</i> ~1590			C	
А	~ 1350 1680.3 6	$(10+)^{\ddagger}$		D	
В	1691.9 5	(10-)#		DE	
	1724 5			C	
	1829 5			C	
	1915 5			C	
В	1988.4 5	(11-)#		DE	
	2214 5			C	
В	2280 5	$(12-)^{\#}$		DE	
		` '			

				18	⁸² Hf Levels (continued)
Seq.	E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
A	2331.7 8	(12+) [‡]		D	
	2571.3 <i>12</i>	(13+)	40 μs <i>10</i>	E	%IT=100. $T_{1/2}$: from γ (t) in ¹⁸⁰ Hf(²³⁸ U, ²³⁶ U γ) (1999Da09). J π : configuration=(ν 11/2[615] ν 1/2[510])(π ² ₈ _); K π =(13+). Theoretical calculations (2001Oi03,2000Xu03) predict 13+ isomer in ¹⁸² Hf.
В	2649.3 6	(13-)#		D	
В	3010.0 7	(14-)#		D	
А	3065.3 9	(14+) [‡]		D	
А	3869.2 11	(16+)‡		D	
А	4733.9 12	(18+)‡		D	

[†] From least-squares fit to $E\gamma$'s for levels populated in γ -ray datasets, others are from (t,p). [‡] g.s. band members, from intensity balance in IT decay, multipolarities of the transitions in the cascade are consistent with E2. [#] Possible member of configuration= $\pi 7/2[404] \otimes \pi 9/2[514]$, K π =(8-).

	$\gamma^{(182}\text{Hf})$										
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	Mult.	α	Comments			
97.79	2+	0.0	0+	97.79 9	100	E2	3.85	Mult.: from intensity balance arguments in IT decay			
322.17	(4+)	97.79	2+	224.38 10	100	[E2]	0.198 4	deedy.			
666.27	(6+)	322.17	(4+)	344.1 <i>1</i>	100	[E2]	0.0529				
818.4	(1,2+)	97.79	2+	720.6 4	100 10						
		0.0	0 +	818.4 4	100 25						
905.9		97.79	2+	808.1 5	100						
1122.07	(8+)	666.27	(6+)	455.80 8	100	[E2]	0.0245				
1172.87	(8-)	1122.07	(8+)	50.80 8	56 7	(E1)	0.418 7	$B(E1)(W.u.)=1.26\times10^{-16}$ 19.			
	(-)		(-)			× ,		Mult.: from intensity-balance in IT decay.			
		666.27	(6+)	506.60 8	100 8	[M2,E3]	0.10 5	B(M2)(W.u.)= 4.0×10^{-12} 5.			
1419.5	(9-)	1172.87	(8-)	246.8 5	100						
1680.3	(10+)	1122.07	(8+)	558.2 5	100						
1691.9	(10-)	1419.5	(9-)	272.3 5	100 8						
		1172.87	(8-)	518.9 5	79 8						
1988.4	(11-)	1691.9	(10-)	296.6 5	100 7						
		1419.5	(9-)	569.1 5	98 7						
2307.3	(12-)	1988.4	(11-)	319.2 5	90 7						
		1691.9	(10-)	615.0 5	100 7						
2331.7	(12+)	1680.3	(10+)	651.4 5	100						
2571.3	(13+)	2307.3	(12-)	264		[E1]		Mult.: Weisskopf estimate supports E1.			
2649.3	(13-)	2307.3	(12-)	341.6 5	100 8						
		1988.4	(11-)	661.0 5	92.8						
3010.0	(14-)	2649.3	(13-)	360.5 5	100 7						
		2307.3	(12-)	703.0 5	78 6						
3065.3	(14+)	2331.7	(12+)	733.6 5	100						
3869.2	(16+)	3065.3	(14+)	803.9 5	100						
4733.9	(18+)	3869.2	(16+)	864.7 5	100						

[†] From weighted averages of values when a level is populated in more than one of the four datasets involving γ -ray studies.

¹⁸²Lu β^- decay (2.0 min) 1982Ki04

Parent: ¹⁸²Lu: E=0.0; $T_{1/2}$ =2.0 min 2; Q=4180 SY; % β -=100 Q(g.s.): 4180 200 (syst,2003Au03). ¹⁸²Lu produced by bombardment of natural tungsten and tantalum targets with ¹³⁶Xe beam at 9 MeV/nucleon.

		¹⁸² Hf Levels
E(level)	$\mathrm{J}^{\pi\dagger}$	
0.0	0+	
97.77 20	2+	
321.8 6	(4+)	
818.4 4	(1,2+)	
905.9 6		

 † From Adopted Levels.

$\gamma^{(182}\text{Hf})$										
Eγ	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	${\rm I}_{\gamma}^{\dagger}$	Mult.	α	Comments		
97.8 2	97.77	2+	0.0	0+	50 10	E2	3.85 7	Mult.: from Adopted		
224.0 5	321.8	(4+)	97.77	2+	15 7	[E2]	0.198 4	Gammas.		
720.8 5	818.4	(1,2+)	97.77	2+	100 10					
808.1 5	905.9		97.77	2+	50 15					
818.2 5	818.4	(1,2+)	0.0	0+	100 25					

 † For absolute intensity per 100 decays, multiply by 0.30 3

	β^-	radiatic	ons
$E\beta^-$	E(level)	$I\beta^{-\dagger}$	Log ft
(3.3E+3)	905.9	<15	>6.8
(3.4E+3)	818.4	<60	>6.2
(3.9E+3)	321.8	<5	>7.5
(4.1E+3)	97.77	<20	>7.0

Intensities: Relative I_{γ}

 $^{182}_{72}\mathrm{Hf}_{110}$

¹⁸²Hf IT decay (61.5 min) 1974Wa14

1974Wa14 (also 1971Wa09): Sources produced by ¹⁸⁶W(p,p α) E=50, 92 MeV. Measured E γ , I γ , E β , $\gamma\gamma$, $\beta\gamma$ coin, isomer T_{1/2}. Other: 1983Zy02: ¹⁸²Hf produced in (⁸⁴Kr,X) and (¹³⁶Xe,X) on natural tungsten target at 8.5 MeV/nucleon.

¹⁸²Hf Levels

Nuclear Level Sequence

A g.s. band.

Seq.	E(level)	$J^{\pi\dagger}$	T _{1/2}	Comments
A A A A	0.0 97.8 <i>1</i> 322.20 <i>14</i> 666.30 <i>17</i>	0+ 2+ (4+) (6+)		
А	1122.10 <i>19</i> 1172.90 <i>19</i>	(8+) (8-)	61.5 min <i>15</i>	T _{1/2} : from timing of γ rays (1974Wa14). J π : probable configuration= π 7/2[404] π 9/2[514].

[†] From Adopted Levels.

	$\underline{\gamma^{(182}\text{Hf})}$										
Eγ	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	I_{γ}^{\dagger}	Mult. [‡]	α	Comments			
50.8 1	1172.90	(8-)	1122.10	(8+)	35 4	(E1)	0.418 7	Mult.: from intensity-balance arguments.			
97.8 1	97.8	2+	0.0	0+	24.4 <i>12^a</i>	E2	3.85	Mult.: $\alpha(\exp)=3.9$ from intensity balance argument.			
224.4 1	322.20	(4+)	97.8	2+	100	[E2]	0.197				
344.1 <i>1</i>	666.30	(6+)	322.20	(4+)	121 12	[E2]	0.0529				
455.8 <i>1</i>	1122.10	(8+)	666.30	(6+)	53 4	[E2]	0.0245				
506.6 1	1172.90	(8-)	666.30	(6+)	62 5	[M2,E3]	0.10 5				

[†] For absolute intensity per 100 decays, multiply by 0.38 3 [‡] The assumed multipolarities are consistent with the intensity balances at each level, with [E2] constrained for 97.8 γ . ^{*a*} Another 97.8-keV transition was observed in ¹⁸²Hf β^- decay. The intensity has been divided by the authors assum-

ing I(γ +ce)(97.9 γ)=I(γ +ce)(244 γ).

¹⁸⁰Hf(t,p) **1983Bu03**

E=15 MeV. Magnetic spectrograph, FWHM \approx 15 keV. Measured cross sections, $\sigma(\theta)$, comparisons with DWBA calculations. Theory: 1995Sh38.

¹⁸²Hf Levels

Nuclear Level Sequence

A g.s. band.

Seq.	E(level) [‡]	J^{π}	L [#]	$d\sigma/d\Omega~(\mu b/sr)^\dagger$	Comments
A	0	$0+^{@}$	[0]	287	
А	96 <i>3</i>	2+@		31	
А	323 <i>3</i>	$(4+)^{@}$		23	
А	≈ 667	(6+)@		5	
	818 <i>3</i>			19	
	1022 3			11	
	≈ 1034	(0+)	(0)	15	L=0 strength=5, relative to 100 for g.s.
	1265 <i>3</i>	(0+)	(0)	8	L=0 strength=3, relative to 100 for g.s.
	1465 <i>3</i>			13	
	1497 <i>3</i>			51	
	≈ 1590			6	
	1724 5			7	
	1829 5			14	
	1885 <i>5</i>			10	
	1915 5			38	
	2214 5			22	
	2280 5			32	

[†] At θ =30°; overall uncertainties are from 15-20%.

[‡] Uncertainties are stated by 1983Bu03 as \approx 3 keV for strongly populated states below 1.5 MeV and \approx 5 keV for those above 1.5 MeV.

[#] Identified in comparison with L=0 distribution to assumed L=0 shape for the ground state. The DWBA comparisons give poor agreement with $\sigma(\theta)$ distributions, possibly due to multi-step processes. $\sigma(\theta)$ distributions for all groups are shown by 1983Bu03 in figure 10, but tentative L values are given for only the 1034 and 1265 groups.

[@] From Adopted Levels.

180 Hf(136 Xe, 134 Xe γ) 2007Ng03

 $E(^{136}Xe)=750$ MeV. Enriched (>94%) target. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ using GAMMASPHERE array with 100 Compton-suppressed HPGe detectors and position-sensitive parallel-plate avalanche counter (CHICO). Coincidence requirement was at least two γ rays in γ -ray detectors and two correlated particles in CHICO detector.

Two-neutron transfer reaction.

¹⁸²Hf Levels

Nuclear Level Sequences

A g.s. band.

B $\check{K}\pi$ =8- band. Configuration= $\pi 7/2[404] \otimes \pi 9/2[514]$.

Seq.	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
A	0.0	0+		
А	98.3 5	2+		
А	322.4 7	4+		
А	666.1 9	6+		
А	1121.6 10	8+		
В	1173.1 <i>10</i>	8-	61.5 min 15	$T_{1/2}$: from Adopted Levels.
В	1419.8 <i>11</i>	9-		
А	1679.8 <i>11</i>	10 +		
В	1692.2 11	10-		
В	1988.6 <i>11</i>	11-		
В	2307.6 11	12-		
А	2331.2 12	12 +		
В	2649.5 12	13-		
В	3010.3 12	14-		
А	3064.8 13	14 +		
А	3868.7 14	16+		
А	4733.4 15	18 +		

[†] From least-squares fit to $E\gamma's$.

[‡] As proposed by 2007Ng03 based on band assignments. The assignments in Adopted Levels are the same except that all assignments above 100-keV level are in parentheses there due to lack of strong arguments.

	$\chi^{(182}\text{Hf})$											
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	Eγ	Iγ	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Eγ	Iγ	
98.3	2+	0.0	0 +	98.3 <i>5</i>		2307.6	12-	1988.6	11-	319.2 5	18.4 14	
322.4	4+	98.3	2+	224.1 5	100 3			1692.2	10-	615.0 5	20.5 14	
666.1	6+	322.4	4+	343.7 5	70 <i>3</i>	2331.2	12 +	1679.8	10 +	651.4 5	18.2 13	
1121.6	8+	666.1	6+	455.4 5	35.5 19	2649.5	13-	2307.6	12-	341.6 5	15.5 12	
1173.1	8-	1121.6	8+	51.5 5				1988.6	11-	661.0 5	14.3 12	
		666.1	6+	507.1 5	12.3 11	3010.3	14-	2649.5	13-	360.5 5	19.3 <i>14</i>	
1419.8	9-	1173.1	8-	246.8 5	20.1 14			2307.6	12-	703.0 5	15.0 12	
1679.8	10 +	1121.6	8+	558.2 5	24.9 16	3064.8	14 +	2331.2	12 +	733.6 5	14.0 12	
1692.2	10-	1419.8	9-	272.3 5	14.3 12	3868.7	16+	3064.8	14 +	803.9 5	11.8 11	
		1173.1	8-	518.9 5	11.3 11	4733.4	18 +	3868.7	16+	864.7 5	8.7 9	
1988.6	11-	1692.2	10-	296.6 5	18.2 13							
		1419.8	9-	569.1 5	17.8 <i>13</i>							

180 Hf(238 U, 236 U γ) 1999Da09

1999Da09 (also 2001Ch89,2001Ch10,1999Ch48): Isomer produced and identified in ¹⁸⁰Hf(²³⁸U,²³⁶Uγ) E=1.6 GeV and ¹⁸⁰Hf(²⁰⁸Pb,²⁰⁶Pbγ) E=1.3 GeV. Also natural Hf target used. Both reactions involve 2-neutron transfer.

Pulsed beam. Measured γ , $\gamma\gamma$, $T_{1/2}$ using an array of 12 Compton-suppressed Ge detectors for ²³⁸U beam and GAMMAS-PHERE array for ²⁰⁸Pb beam.

182Hf Levels

Nuclear Level Sequences

A g.s. band.

B 8- band.

Seq.	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	Comments
A	0	0+		
А	98.0 10	2+		
А	323.0 15	4+		
А	667.0 18	6+		
А	1123.0 20	8+		
В	1174.0 20	8-	61.5 min 15	$T_{1/2}$: from Adopted Levels.
				Configuration= $\pi 7/2[404]\pi 9/2[514]$; K π =8
В	1421.1 <i>21</i>	(9-)		
В	1692.9 <i>21</i>	(10-)		
В	1989.4 22	(11-)		
В	2308.1 22	(12-)		
	2572.1 25	(13+)	40 µs 10	$T_{1/2}$: from γ (t) (1999Da09).
				Configuration= $(v11/2[615]v1/2[510])(\pi_8^2)$; K π =(13+).

[†] From least-squares fit to $E\gamma's$; $\Delta(E\gamma)=1$ keV assumed for each transition.

[‡] As given by 1999Da09, based on (13+) assignment for the $40-\mu$ s isomer. The assignments in Adopted Levels are the same except that all assignments above 100-keV level are in parentheses there due to lack of strong arguments.

 γ rays from ¹⁸²Hf were identified from coincidences between ¹⁸²Hf γ rays and ²³⁶U γ rays (260-303-341-375 cascade in ²³⁶U).

\mathbf{E}_{i}^{level}	J_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Eγ	Mult.	Comments
98.0	2+	0	0+	98		
323.0	4+	98.0	2+	225		
667.0	6+	323.0	4+	344		
1123.0	8+	667.0	6+	456		
1174.0	8-	1123.0	8+	51		
		667.0	6+	507		
1421.1	(9-)	1174.0	8-	247		
1692.9	(10-)	1421.1	(9-)	272		
		1174.0	8-	519		
1989.4	(11-)	1692.9	(10-)	297		
		1421.1	(9-)	568		
2308.1	(12-)	1989.4	(11-)	319		
		1692.9	(10-)	615		
2572.1	(13+)	2308.1	(12-)	264	[E1]	Mult.: Weisskopf estimate supports E1.

Adopted Levels, Gammas

 $Q(\beta^{-})=-2.80\times 10^{3}$ 10; S(n)=8065 5; S(p)=7094.9 17; Q(\alpha)=1771.8 22 2003Au03

Other reactions:. ⁹Be(²⁰⁸Pb,X) E=1 GeV/nucleon: 2002Pf01: Measured fragment yield, (fragment) γ coin, deduced isomer (at 2230 keV) half-life and isomer production ratio of 10% 2.

Mass measurements: 1977Sh04, 1970Mc03, 1961De21, 1960Bh02.

Structure calculations (levels, moments, transition probabilities, high-K isomers, etc.): 2003Jo10, 1998Sh01, 1996Na08, 1996Na12, 1994Be21, 1994Mo07, 1993Be25, 1991Gr14, 1990Ch50, 1990Ve01, 1989Sa19, 1989Ta06. Only selected references are given here, consult NSR database at www.nndc.bnl.gov website for more detailed bibliography for theoretical studies on ¹⁸²W nuclide.

¹⁸²W Levels

Details of the measurements of Half-life (in ns) of the 100.1, 2+ state:.

1. Deduced from BE2 values in Coulomb excitation: 1.44 7 (1961Ha21), 1.26 11 (1963Gr04), 1.340 30 (1968St13), 1.368 29 (1973Be40, earlier value from the same lab is 1.31 15, 1958Mc02), 1.15 12 (1989Ku04), 1.53 7 (1991Wu05, earlier value is 1.41 9 in 1989Wu04).

2. Delayed coincidence method in Coulomb excitation: 1.366 14 (1961Ke07), 1.43 4 (1962Bi05, earlier value from the same group is 1.55 14,1959Bi10).

3. Pulsed beam: $(p,p'\gamma)$: 1.372 14 (1964Sc21).

4. Deduced from BE2 in Muonic atom: 1.343 40 (1970Hi03).

5. Deduced from BE2 in (e.e'): 1.391 21 (1987PeZV.1988PeZW).

6. Delayed coincidence in ¹⁸²Ta β^- decay: 1.27 *10* (1955Su64,1954Su10), 1.55 *11* (1963Ba24), 1.26 *4* (1963Fo02), 1.41 6 (1963Ko02), 1.47 9 (1964Ro19), 1.4 I (1964Be36), 1.39 3 (1965Do02), 1.37 3 (1965Me08), 1.45 4 (1966Bl08), 1.35 7 (1966Fu03), 1.43 5 (1966Ra04), 1.48 3 (1970Ab14), 1.380 20 (1971Ho14), 1.55 5 (1973GrXX), 1.380 30 (1983El02)..

Cross Reference (XREF) Flags

- ¹⁸⁰W(t,p) ¹⁸²Ta β^- decay (114.43 d) I Coulomb excitation Α Q $^{182}W(\gamma,\gamma)$:Mossbauer $^{183}W(d,t)$ Muonic atom В J R $^{182}W(\gamma,\gamma')$ $^{183}W(^{3}\text{He},\alpha)$ ¹⁸²Re ε decay (64.0 \hbar) С Κ S ¹⁸²Re ε decay (12.7 \hbar) $^{182}W(e,e')$ L D
 - ¹⁸⁴W(p,t) Т
 - $^{186}W(n,5n\gamma)$ Π

¹⁸⁶Os α decay Е М F

 $^{182}W(n,n'\gamma)$ Ν $^{182}W(n,n')$

0

- 176 Yb(9 Be, $3n\gamma$) 176 Yb(13 C, α 3n γ) G
- ¹⁸⁰Hf(α ,2n γ) Н
- 182 W(p,p'),(pol p,p'),(α , α') $^{182}W(d,d')$ Р

Nuclear Level Sequences

- K π =0+, g.s. band. Backbending at $\hbar \omega \approx 0.38$ MeV. А
- $K\pi = 0 + \beta$ band. В
- $K\pi = 2 + \gamma$ band. С
- D $K\pi=2$ - octupole band.
- $v9/2[624] \otimes v11/2[615]]$, $K\pi = 10+$. (g_K-g_R)=0.34 4 (1994Re03), g_K(exp)=-0.15 2. Е
- 4-quasiparticle band, $K\pi = (16+)$. $v^2(8-)$: $v9/2[624] \otimes v7/2[503]$; $\pi^2(8-)$: $\pi9/2[514] \otimes \pi7/2[404]$. $(g_K-g_R)=0.21$ 19 F (1994Re03), $g_K(exp) = +0.366$. Configuration= $(v9/2+[624])(v11/2+[615])10+)+(\pi7/2+[404])(\pi5/2+[402])6+$ is also proposed by 1994Re03.
- G 4-quasiparticle band, $K\pi = (17-)$. $v^2(10+): v9/2[624] \otimes v11/2[615]]; \pi^2(7-):\pi9/2[514] \otimes \pi5/2[402]. (g_K-g_R)=0.307,$ 0.18 7 (1994Re03), $g_K(exp) = +0.46$ 3.
- $v9/2[624] \otimes v1/2[510]$, $K\pi=4-$. $g_K(exp)=+0.05$ 4. Η
- $\pi 5/2[402] \otimes \pi 7/2[404], K\pi = 6+. g_K(exp) = +1.11 5.$ Ι
- *v*9/2[624]⊗*v*1/2[510], K*π*=5-. T
- Κ $v9/2[624] \otimes v3/2[512], K\pi = 6-. g_K(exp) = +0.01 I.$
- $\pi 9/2[514] \otimes \pi 5/2[402]$, K π =7-. g_K(exp)=+1.17 7. L
- М $v9/2[624] \otimes v7/2[503]$, K π =8-. g_K(exp)=-0.21 5.
- 4-quasiparticle band, K π =15+. $v^2(8-)$: $v9/2[624] \otimes v7/2[503]$; $\pi^2(7-)$: $\pi9/2[514] \otimes \pi5/2[402]$. $g_K(exp)$ =+0.52 4. Ν
- $v_{(10+)}^2 \otimes \pi^2_{(8-)}, \ K\pi = 18-. \ v^2(10+): v9/2[624] \otimes v11/2[615]]; \ \pi^2(8-): \pi 9/2[514] \otimes \pi 7/2[404]. \ g_K(\exp) \approx +0.32.$ 0
- K=(12) band. Р

Seq.	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	XREF	Comments		
A	0.0	0+	STABLE	ABCDEFGHIJKLMNOPQR TU	$\begin{array}{l} T_{1/2}\colon T_{1/2}(\alpha \ decay) \ measured \ limits: \geq 7.7\times 10^{21} \ y \\ (2004Co26) \ with \ 90\% \ confidence \ limit. \ Others: \geq \\ 1.7\times 10^{2}0 \ y \ (2003Da05,2003Bi13,1997Ge15, \\ 1995Ge17), \geq 2.5\times 10^{1}9 \ y \ (2003Ce01), \ 1960Be13. \\ ()^{1/2}=5.3566 \ fm \ 17 \ (2004An14, \ evaluation). \\ \Delta (^{182}W^{-180}W)=0.068 \ fm^{2} \ 4 \ (1994Ji02). \\ \Delta (^{183}W^{-182}W)=0.052 \ fm^{2} \ 3 \ (1994Ji02). \\ \Delta (^{184}W^{-182}W)=0.090 \ fm^{2} \ 5 \ (1994Ji02). \end{array}$		
A	100.10597 7	2+	1.381 ns <i>10</i>	ABCD FGHIJKLMNOPQRSTU	μ =+0.521 <i>I6</i> (1968Pe06,1989Ra17). Q=-2.13 <i>35</i> (1977RuZV,1989Ra17). B(E2)=4.17 <i>6</i> . μ : mossbauer effect (1968Pe06). Other: +0.528 <i>12</i> (CEAD,1972Ca12). See also 2005St24 compilation. Q: cER (1977RuZV). See also 2005St24 compilation. T _{1/2} : from several weighted averaging methods (weighted average, limitation of statistical weights method (LWM), normalized residuals method (NRM) and Rajeval's technique (RT)) using 26 independent measurements (from 1954 to 1991) of lifetimes from Coulomb excitation, delayed coincidence methods, pulsed beam, (e,e') and muonic atom. The value of χ^2 is \approx 2.1 for different methods as compared to critical χ^2 of 1.7. All the values used in the averaging procedure are listed above in the header comment. 2001Ra27 evaluation (of 27 measurements from 1954 to 1988) gives nearly the same adopted B(E2)(up)=4.20 <i>8</i> and mean lifetime (τ)=1990 ps 20 (T _{1/2} =1.379 ns 14).		
А	329.4268 6	4+	62 ps <i>3</i>	A CD FGHI LMNOPQRSTU	J π : E2 γ to 0+. μ =+0.88 <i>17</i> (1972Be94,1989Ra17). μ : iPAC (1972Be94). See also 2005St24 compilation. T _{1/2} : from RDM in Coul. ex L π : Al=2, E2 α to 2.		
А	680.40 6	6+	8.2 ps 9	A C FGH LMNOPQR TU	$T_{1/2}$: from RDM in Coul. ex $I\pi$: stretched E2 γ to 4+.		
B A	1135.82 <i>10</i> 1144.30 <i>12</i>	0+ 8+	2.01 ps 17	A I MNPRT FGH LM Q U	J π : E0 transition to 0+. T _{1/2} : from RDM in Coulomb excitation.		
С	1221.4017 <i>10</i>	2+	0.434 ps <i>11</i>	A CD HI MNOPQR T	J π : $\Delta J=2$, E2 γ to 6+; band assignment. J π : E2 γ to 0+. T _{1/2} : from B(E2) in Coulomb excitation. B(E2)(IS)(\uparrow)=0.146 <i>11</i> ((pol p,p') 1987Ic04). This gives B(E2)(W.u.)=4.8 4 compared to 3.4 from Coul.		
В	1257.4144 11	2+	1.71 ps 13	A CD HI MN PQR T	ex $J\pi$: E2 γ to 0+. T: from B(E2) in Coulomb excitation		
D	1289.1515 <i>10</i>	2-	1.12 ns 4	A CD GH M QR	$\mu_{1/2}$. from $\beta(E2)$ in Coulomb excitation. $\mu=+1.74$ 24 (1973Se14,1989Ra17). μ : iPAC (1973Se14). See also 2005St24 compilation. J π : M2 γ to 0+. T _{1/2} : from (β)(ce)(t) and $\beta\gamma$ (t) in ¹⁸² Ta β^- decay. Weighted averaging method (normalized residuals)		
С	1331.1170 <i>11</i>	3+	<0.6 ns	A CD H MN QRS	used. $J\pi$: M1+E2 γ 's to 2+ and 4+. $T_{1/2}$: from $\gamma\gamma(t)$ in ¹⁸² Ta β^- decay.		
D	1373.8317 <i>10</i>	3-	78 ps 10	A CD GH MNOPQ T	kei: N: 1309. μ =0.96 27 (1972He10,1989Ra17). μ : iPAC (1972He10). Other: 2.21 34 (IPAC,1973Se14). See also 2005St24 compilation. Jπ: E3 γ to 0+. T _{1/2} : from (ce)(ce)(t) in ¹⁸² Ta β ⁻ decay.		

¹⁸²W Levels (continued) $I^{\pi \ddagger}$ E(level)[†] $T_{1/2} \\$ XREF Seq. Comments Ref: N: 1357. С 1442.832 6 4 +0.32 ps 3 A CD ΗI MN POR T J π : M1+E2 γ to 4+; E2 γ to 2+; (E1) γ from 5-; band assignment. $T_{1/2}$: from B(E2) in Coul. ex.. B(E4)(IS)([†])=0.0122 25 ((pol p,p') 1987Ic04) which gives B(E4)(W.u.)=2.0 4. D 1487.5035 10 4-<49 ps A CD GH MN $J\pi$: M2+E3 γ to 2+; M1+E2 γ from 5-. $T_{1/2}$: from (ce)(ce)(t) in ¹⁸²Ta β^- decay. Ref: N: 1492. В 1510.22 5 J π : E2 γ to 2+; E2+M1 γ to 4+; γ from 5-. 4 +A C Η R М T_{1/2}: from $\gamma\gamma$ (t) in ¹⁸²Ta β^- decay. 1553.2256 10 A CD Η 4-1.27 ns 4 GHMN R $J\pi$: M2+E3 γ to 2+; M1+E2 γ from 5-. D 1621.283 22 5-С GH J π : M1 γ from 6-; E1 γ to 4+. Mnprt 1623.51 4 С (5)+С Η Mn pQr t J π : E1 γ from 6-; band assignment. Η 1660.383 21 5-С GH MNPRT J π : E1+M2 γ to 4+; M1+E2 γ to 5-; M1 γ from 6-. Ref: N: 1678. 1711.97 15 0.76 ps 7 А 10 +FGH Q U $T_{1/2}$: from RDM in Coulomb excitation. $J\pi$: $\Delta J=2$, E2 γ to 8+; band assignment. 1756.75 4 $J\pi$: log ft=7.4 from 7+, E2 γ to 4+. Ι 6 +С GHMN Ref: N: 1745. 1765.54 12 М prt p rSt Η 1768.943 23 6-С GH М $J\pi$: E1+M2 γ to 6+; E2 γ 's to 4-; band assignment. 1769.5 7 E(level): level is suspect since the two γ rays at 1089 С (6+)Q and 1440 are associated with the decay of 1769, (6)level. J π : γ to 6+; possible band assignment. J π : M1 γ to 4-; M1 γ from 6-; L(d,t)=4 from 1/2-. J 1809.64 7 5-С GHΝ R t Ref: N: *1792. J π : log *ft*=8.8 from 7+; M1+E2 γ to 5-; band D 1810.85 4 (6)-С GH Ν t assignment. Ref: N: *1792. 1813.4 3 MN Ref: N: *1792. r t Κ 1829.53 3 6-С GHrSt $J\pi$: log ft=7.4 from 7+; E2 γ to 4-. 1833.1 6 М r t 1856.06 5 $J\pi$: γ 's to 0+ and 4+. (2+)D Mnprt Ref: M: 1856.2. $J\pi$: γ 's to 0+ and 2+; $\gamma(\theta)$ in $(n,n'\gamma)$. 1856.9 5 1 Mnprt Ref: M: 1856.9. 1871.17 15 1-D М J π : E1 γ to 0+. 1887.84 21 Ρ М Т 1917.05 5 Η 7-С GH RS $J\pi$: $\Delta J=2$, E2 γ to 5-; γ to (6)-; band assignment. n Ref: R: 1916. 1918.6 4 (2+ to 4+)Mn R J π : γ to 2+. Ref: R: 1923. 1959.34 16 (2+)М pRt $J\pi$: $\Delta J=(2) \gamma$ to 4+; γ to 0+. Ref: R: 1957. Κ 1960.30 3 GH $J\pi$: log ft=7.1 from 7+; $\Delta J=2$, E2 γ 's to 5-. (7)-С t р J 1960.78 7 С G М p RSt J π : M1 γ to 5-; log *ft*=7.9 from 7+; possible band 6assignment. I 1971.04 7 С GHR $J\pi$: log ft=8.2 from 7+; M1+E2 γ to 6+; band (7)+assignment. Ref: R: 1966. L 1978.35 4 (7)-С GH n R $J\pi$: log *ft*=7.0 from 7+; M1+E2 γ to (6)-; band assignment. Ref: R: *1985. Ref: R: *1985. 1981.82 25 Mn R D 1993.68 10 (7-)GH $J\pi$: $\Delta J=2 \gamma$ to 5-; band assignment. n R Ref: R: *1985. $J\pi$: L(d,t)=1,3 from 1/2-; possible γ 's to 2+ and 4+. 2016.8 8 (2,3,4)+М R

 $^{182}_{74}\rm{W}_{108}\text{-}4$

				¹⁸² W	Levels	(con	tinued)	
Seq.	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF				Comments
			/					E(level): 2023 7 level in (d,t) is probably not
	2023.57 3	3-		D		М		$J\pi$: M1+E2 γ 's to 2- and 4
	2057.39 5	1 +		D		М	R	$J\pi$: $\Delta J=1 \gamma$ to 0+; L(d,t)=1,3 from 1/2- target.
								Ref: R: 2057.
Н	2087.43 7	8-			GH		R T	J π : $\Delta J=2 \gamma$ to (6-); band assignment. Ref: R: 2086.
	2109.96 20	(2-,3-)		D		М	RΤ	Jπ: (E2) γ to 4-; (E1+M2) γ to 2+. Ref: T: *2117.
Κ	2114.35 5	(8)-		С	GH		Т	J π : E2 γ to (6)-; log <i>ft</i> =8.2 from 7+; band
								assignment. Ref: T: *2117.
	2116.4 3			D		М	Т	J π : 0+ to 4+ from γ to 2+.
								Ref: T: *2117.
М	2120.25 7	(8-)		С	GH		Т	J π : (M1) γ to (7)-; probable quasiparticle structure.
Ŧ	2121 2 3						5.0	Ref: T: *2117.
J	2131.3 3	(7-)			GH		RS	$J\pi$: γ to (6)-; possible band assignment.
	2143.0 10	(2)		Л		M	PKt DD+	$\mathbf{L}_{\mathbf{T}}$ (E1) at the $4 + (E1 + M2)$ at the $2 + $
	2147.95 17	(3-)		ע		M	PKU	$J\pi$: (E1) γ to 4+; (E1+M2) γ to 2+.
	2175.5 5	(0+10.4+)		D		Р	F R I	$J\pi$. γ to 2π . Ref. T: *2175
С	2180 4 8	(8+)					0	$I\pi$: γ 's to $8+$ and $6+$ band assignment
e	2184.04 4	(23-)		D		М	Ϋ́Τ	$J\pi$: (M1) γ 's to 2- and 3
		(_ ,= ,		_			-	Ref: T: *2175.
L	2204.54 6	(8)-		C	GH		pRt	J π : M1+E2 γ to (7)-, log <i>ft</i> =7.5 from 7+. Ref: R: *2204.
	2207.21 16	(3-)		D		М	Rt	Jπ: (E3) γ to 0+ and (E1+M2) γ to 4+. Ref: R: *2204.
	2209.07 17	3-		D		М	Rt	J π : E1 γ to 4+, log <i>ft</i> =7.9 from 2+. Ref: R: *2204.
Ι	2212.49 11	(8+)			GH		p R t	J π : $\Delta J=1 \gamma$ to (7)+; band assignment. Ref: R: *2217.
D	2225.35 11	(8-)			GH		R	J π : Δ J=2 γ to (6)-, band assignment. Ref: R: *2217.
Е	2230.63 15	(10+)	1.3 μs <i>1</i>		FGH		Т	J π : (M1) γ to 10+; γ to 8+; probable quasiparticle
								structure. $T_{1/2}$: from $\gamma(t)$; average of 1.2 μ s 1 in ⁹ Be(²⁰⁸ Pb,X) and 1.4 μ s 1 in (α ,2n γ).
	2240.83 15	(3+)		D		М	R	$J\pi$: (M1) γ 's to 2+ and 4+.
Н	2273.87 8	9-			GH		Rt	$J\pi$: $\Delta J=2 \gamma$ to (7)-; γ to (8-); band assignment. Ref: R: *2270.
	2274.63 4	(3)-		D		М	Rt	Jπ: E1 γ to 2+; (M1) γ to 4 Ref: R: *2270.
	2283.5 6	1				М	Rt	Jπ: 2283 $\gamma(\theta)$ in (n,n' γ). Ref: R: 2284.
Κ	2301.56 8	(9-)			G			J π : γ 's to (7)- and (8)-; band assignment.
	2316.1 22	(1,2+)		D			Т	$J\pi$: γ to 0+. Ref. T: 2311
J	2323.85 21	(8-)			GH		ΡrΤ	$J\pi$: γ to (7)-; possible band assignment.
								Ref: P: *2328. Ref: T: *2331.
М	2327.91 10	(9-)			Н		ΡrΤ	Jπ: Δ J=1, (M1+E2) γ to (8-); band assignment. Ref: P: *2328.
	2334.25 21				Н		P t	$J\pi$: (7,8,9) from γ to (7)
	0070 57 10	12	0.20 2				op	Ref: P: 2335.
А	2372.57 18	12+	0.38 ps 2		FGH		QR TU	J π : $\Delta J=2$, E2 γ to 10+; band assignment. T _{1/2} : from B(E2) in Coulomb excitation. Ref: B: 2376

				¹⁸² W Leve	els (co	ontinued)	
Seq.	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments
	2382.1 7	1	7.9 fs 11 [#]		K		$\frac{1}{3\pi} \text{ from } \gamma \gamma(\theta)$
D	2445.98 15	(9-)		GH		R	$J\pi$: ΔJ=2 γ to (7-), band assignment. Ref. R: *2453
L	2455.74 12	(9-)		GH		R	$J\pi$: $\Delta J=1 \gamma$ to (8)-; γ to (7)-; band assignment. Ref. R: *2453
	2474.1 7	1@	15 fs 2 [#]		K		$J\pi$: from $\gamma\gamma(\theta)$ B(M1)($\dot{\gamma}$)=0.31.5 B(E1)($\dot{\gamma}$)=3.5 × 10 ⁻⁵ 5
Ι	2479.83 13	(9+)		GH		R	$J\pi$: $\Delta J=1 \gamma$ to (8+); γ to (7)+; band assignment. Ref: R: 2471.
н	2486.89 10	10-		GH		r	$I\pi$: $\Lambda I=2$ γ to (8-): γ to (9-): hand assignment.
E	2492.76.17	(11+)		FGH		r	$I\pi$: $\Lambda I=1 \gamma$ to (10+); band assignment.
ĸ	2507 48 9	(10-)		G		-	$I\pi$: \sqrt{s} to (8)- and (9-); hand assignment
IX.	2520 10	0+		G		Т	$J\pi$: L(p,t)=0. Ref. T. 2520
	2552 10	0+				т	$I\pi$: I (n t)-0
	2552 10	01				1	Ref: T: 2552
м	2563 94 12	(10_{-})		СН			$I\pi$: χ to (9_{-}) : hand assignment
н	2710.03 11	(10-)		CH CH			$I\pi$: $\Lambda I=2$ y to $(9-)$; y to $(10-)$; hand assignment
11	2725 10	0+		GII		РТ	$J\pi$: L(p,t)=0. Ref. T. 2725
T	2730.85.16	(10_{-})		СН			$I\pi$: $\Lambda I = 1 \times t_0 (Q_2)$: hand assignment
D	2730.15 15	(10^{-})		CU			$I\pi$: $\Delta I=2$ y to (9-), band assignment
K K	2737.15 13	(10^{-}) (11)		C			$I\pi$: $\Delta I=2$ γ to (0) ; band assignment
I	2741.00 12	(11-)		Cu Cu		т	I_{π} : $\Delta J = 2 \gamma$ to (J^2) , band assignment.
I E	2709.20 10	(10+)		GR		1 	$J\pi$. $\Delta J=1$ γ to (11+), γ to (10+), band assignment.
L	2773.03 16	(12+)		r Gn		1 	assignment. I = I = I = I = I = I = I = I = I = I =
M	2823.93 10	(11-)		GH		Т	$J\pi$: $\Delta J=1 \gamma$ to (10-); γ to (9-); band assignment.
	2884.1 7	1	16 fs 2^{π}		K		Jπ: from $\gamma\gamma(\theta)$ B(M1)(↑)=0.22 3. B(E1)(↑)=2.4×10 ⁻⁵ 3.
	2892.1 7	(1)	27 fs 17 [#]		K		Jπ: from $\gamma\gamma(\theta)$ B(M1)(↑)=0.07 4. B(E1)(↑)=0.8×10 ⁻⁵ 5.
	2941.0 20	(1,2+)			Κ		$J\pi$: γ to 0+.
Н	2972.49 13	12-		G			$J\pi$: $\Delta J=2 \gamma$ to (10-); γ to (11-); band assignment.
D	2980.58 18	(11-)		GH			J π : $\Delta J=2 \gamma$ to (9-); band assignment.
Κ	2981.33 12	(12-)		G			$J\pi$: γ to (10-): band assignment.
	2996 1 7	1	6.7 fs $13^{\#}$		K		$I\pi$: from $\gamma\gamma(\theta)$ Possible K=(0) assigned by
		-	017 10 10				1993He15. B(M1)(\uparrow)=0.25 5. B(E1)(\uparrow)=2.7×10 ⁻⁵ 5.
L	3027.96 19	(11-)		GH			$J\pi$: $\Delta J=(1) \gamma$ to (10-); γ to (9-); band assignment.
Е	3078.23 19	(13+)		FGH			$J\pi$: $\Delta J=1 \gamma$ to (12+); $\Delta J=2 \gamma$ to (11+); band assignment.
	3080.1 7	1@	17 fs 3 [#]		K		J <i>π</i> : from $\gamma\gamma(\theta)$ B(M1)(\uparrow)=0.15 3. B(E1)(\uparrow)=1.6×10 ⁻⁵ 3.
Μ	3106.72 18	(12-)		GH			$J\pi$: $\Delta J=(1) \gamma$ to (11-); γ to (10-); band assignment.
А	3112.87 20	14+	0.24 ps 4	FGH		Q	$J\pi$: $\Delta J=2$. (E2) γ to 12+: band assignment.
	2162 1 7	1@	$10.2 \text{ fo } 10^{\#}$		V	4	$T_{1/2}$: from B(E2) in Coul. ex
	5105.1 /	1	10.5 18 14		ĸ		B(M1)(\uparrow)=0.24 3. B(E1)(\uparrow)=2.6×10 ⁻⁵ 4.
	3198.1 7	(1,2+) ^w	16 fs <i>3</i> [#]		K		J π : (γ, γ') excitation from 0+. B(M1)(\uparrow)=0.14 3. B(E1)(\uparrow)=1.5×10 ⁻⁵ 3.
Н	3224.53 15	13-		G			$J\pi$: $\Delta J=2 \gamma$ to (11-); band assignment.
Κ	3269.56 16	(13-)		G			$J\pi$: $\Delta J=2 \gamma$ to (11-); band assignment.
D	3319.7 5	(12-)		G			J π : γ to (10-); band assignment.
L	3343.06 21	(12-)		G			$J\pi$: $\Delta J=(1) \gamma$ to (11-); γ to (10-); band assignment.
	3365.1 7	1@	11.1 fs 23 [#]		K		$J\pi$: from $\gamma\gamma(\theta)$
		-	=-				$B(M1)(\uparrow)=0.17$ 4. $B(E1)(\uparrow)=1.9\times10^{-5}4.$

				¹⁸² W Leve	els (cor	ntinued)			
Seq.	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments		
E	3398.33 20	(14+)		FGH			J π : $\Delta J=2 \gamma$ to (12+); $\Delta J=1 \gamma$ to (13+); band		
М	3410.54 20	(13-)		G			$J\pi$: γ 's to (11-) and (12-); band assignment.		
Р	3415.90 20	(12)		G			$J\pi$: $\Delta J=1 \gamma$ to (11+); band assignment.		
	3422.1 7	$(1,2+)^{@}$	10.3 fs 20 [#]		Κ		$J\pi$: (γ, γ') excitation from 0+.		
							$B(M1)(\uparrow)=0.19 \ 3. \ B(E1)(\uparrow)=2.1\times10^{-5}4.$		
Κ	3518.04 15	(14-)		G			J π : γ to (12-); band assignment.		
Η	3549.99 17	14-		G			J π : Δ J=2 γ to (12-); band assignment.		
D	3567.8 4	(13-)	#	G			$J\pi$: $\Delta J=(2) \gamma$ to (11-); band assignment.		
	3601.1 7	1.	6.2 fs <i>12</i> [#]		K		J π : from $\gamma\gamma(\theta)$ B(M1)(\uparrow)=0.23 4. B(E1)(\uparrow)=2.5×10 ⁻⁵ 5.		
	3640.0 20	(1,2+)			Κ		$J\pi$: γ to 0+.		
Р	3677.13 22	(13)		G			J π : γ to (12+); band assignment.		
	3727.1 15	(1,2+)			K		$J\pi$: γ to 0+.		
Μ	3733.85 23	(14-)		G			J π : γ 's to (12-) and (13-); band assignment.		
E	3736.38 21	(15+)		FGH			$J\pi$: γ 's to (13+) and (14+); band assignment.		
Ν	3754.87 21	(15+)	37 ns 2	FG			$J\pi$: $\Delta J=2$, (E2) γ to (13+); $\Delta J=1 \gamma$ to (14+); bandhead		
							of configuration=(($v 9/2+[624]$)($v 7/2-[503]$)8-)+((π		
							$9/2-[514])(\pi 5/2+[402])/-)$. Other possible		
							configuration from coupling of $K\pi = 10^{+}$ neutrons to		
							$K\pi = 5 + \text{ protons: } \pi 9/2[514] + \pi 1/2[541] \text{ is less likely.}$		
							$\Gamma_{1/2}$: from $\gamma\gamma(t)$ in (1°C, α sn γ). Other: 54 hs 10 in		
	2007 (2.10	1.7		<i>a</i>			$({}^{9}\text{Be},3n\gamma).$		
H	3807.63 18	15-		G			$J\pi$: $\Delta J=2 \gamma$ to (13-); band assignment.		
ĸ	2882 0 20	(13-)		G	V		$J\pi$: $\Delta J=2\gamma$ to (15-); band assignment.		
F	3893 67 24	(1,2+) (16+)	<7 ns	FC	r		$J\pi$. γ to 0+. $I\pi$: (M1) γ to (15+): probable quasiparticle structure		
1.	5675.07 24	(10+)	<u>_</u> / IIS	1.0			$T_{1,1}$: from $\gamma'(t)$ in $({}^{9}\text{Be 3ny})$		
Δ	3010.07.23	16+	0.14 ps 3	FC		Ο	$T_{1/2}$. from $P(t)$ in ($Bc, Sn/2$).		
Λ	5710.07 25	10+	0.14 ps 5	1.0		ų	$I_{1/2}$. from D(E2) in Cour. ex.: I_{π} : AI-2, E2 w to $1/4$: hand assignment		
	3020 0 20	1			v		$J\pi$. $\Delta J = 2$, $EZ = \gamma$ to 14+, band assignment.		
р	3966 23 24	(14)		G	K		$I\pi$: \sqrt{s} to (12) and (13): hand assignment		
G	4040.6.3	(17)	20 ns 1	FG			$I\pi$: (E1) γ to (16+); probable quasiparticle structure		
0		(1))	20 110 1				$T_{1/2}$: from $\gamma\gamma(t)$ in (¹³ C, α 3n γ). Other: 17 ns 7 in		
	4074.0.2	(15)		<i>a</i>			$({}^{9}\text{Be},3n\gamma).$		
M	4074.8 3	(15-)		G			$J\pi$: γ 's to (13-) and (14-); band assignment.		
N	40/8.8/24	(16+)		G			$J\pi$: γ to (15+); band assignment.		
E V	4081.5 3	(10+)		G			$J\pi$: γ s to (14+) and (15+); band assignment.		
L L	4110.9 3	(10-)		G			$J\pi$. γ to (14-), band assignment		
н	4211 1 3	16-		G			$I\pi$: $\Lambda I=2$ v to (14-); band assignment		
11	4218.1.5	(17+)		р न			$I\pi$: χ to (16+)		
Р	4280.2 3	(15)		Ğ			$J\pi$: γ 's to (13) and (14); band assignment.		
F	4293.1 3	(17+)		G			$J\pi$: γ to (16+): band assignment.		
G	4421.5 3	(18-)		FG			$J\pi$: γ to (17-); band assignment.		
Ν	4430.5 <i>3</i>	(17+)		G			$J\pi$: γ 's to (15+) and (16+); band assignment.		
Е	4453.2 8	(17+)		G			$J\pi$: γ 's to (15+) and (16+); band assignment.		
Η	4456.2 <i>3</i>	17-		G			$J\pi$: $\Delta J=2 \gamma$ to (15-); band assignment.		
	4569.7 6	(18+)		F			J π : γ 's to (16+) and (17+); band assignment.		
K	4570.9 4	(17-)		G			J π : γ to (15-); band assignment.		
A	4690.87 25	18+		G			$J\pi$: $\Delta J=2 \gamma$ to 16+; band assignment.		
F	4711.9 3	(18+)	0.000	G		-	$J\pi$: γ s to (16+) and (1/+); band assignment.		
	4/48.0 10	(18+)	0.088 ps +22-17	F		ų	E(level): this level also seems connected with g.s.		
							$T_{1/2}$: from B(E2) in Coul. ex		
							$J\pi$: γ to (16+): Coulomb excited.		
Κ	4779.6 <i>4</i>	(18-)		G			$J\pi$: γ to (16-); band assignment.		
		< - /		-			,		

				¹⁸² W Levels	(continued)	<u>)</u>
Seq.	$E(level)^{\dagger}$	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
0	4780.4 4	(18)	_	FG		J π : γ to (17-); possible configuration=((ν 9/2+[624])(ν 11/2+[615])10+)+ ((π 9/2-[514])(π 7/2+[404]))8
Ν	4804.9 <i>3</i>	(18+)		G		$J\pi$: γ 's to (16+) and (17+); band assignment.
G	4820.1 <i>3</i>	(19-)		FG		$J\pi$: γ 's to (17-) and (18-); band assignment.
Е	4847.4 8	(18+)		G		$J\pi$: γ to 16+; band assignment.
Н	4954.8 11	18-		G		$J\pi$: γ to (16-); band assignment.
F	5148.6 5	(19+)		G		$J\pi$: γ 's to (17+) and (18+); band assignment.
	5170.8 4	19-		G	Р	$J\pi$: γ to (17-); band assignment.
0	5191.8 4	(19)		G		$J\pi$: γ to (18); band assignment.
Ν	5199.6 4	(19+)		G		$J\pi$: γ to (18+); band assignment.
Е	5225.3 13	(19+)		G		$J\pi$: γ to (17+); band assignment.
G	5235.8 4	(20-)		FG		$J\pi$: γ 's to (18-) and (19-); band assignment.
Κ	5338.6 11	(19-)		G		$J\pi$: γ to (17-); band assignment.
А	5428.6 4	20+		G		$J\pi$: γ to 18+; band assignment.
0	5618.5 4	(20)		G		$J\pi$: γ 's to (18) and (19); band assignment.
G	5666.9 8	(21-)		G		$J\pi$: γ 's to (19-) and (20-); band assignment.

[†] From least-squares fit to $E\gamma's$.

¹ For high-spin (J>6) states, ascending spins are assumed with the rise in excitation energy, as expected from yrast type of population of levels in in-beam, heavy-ion γ -ray studies. The transitions involving $\Delta J=2$ from angular distributions are generally treated as E2 from RUL and those with $\Delta J=1$ and significant D+Q admixtures as M1+E2. [#] Deduced from $\Gamma_{\gamma 0}$ and branching ratio given by 1993He15.

[@] K=1 assigned by 1993He15 from comparison of reduced transition probabilities with Alaga's rules.

	γ ⁽¹⁸² W)											
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	Mult. [‡]	δ^{\ddagger}	Comments						
100.10597	2+	100.10595 7 ^a	100	E2		B(E2)(W.u.)=135 2.						
						α: 3.89.						
						α: 3.89.						
329.4268	4+	229.3207 6^a	100	E2		B(E2)(W.u.)=196 <i>10</i> .						
						α : 0.196.						
690.40	<u> </u>	251.01.9	100	E2		α : 0.196. $P(E_2)(W_{11}) = 200.22$						
080.40	0+	551.01 0	100	E2		B(E2)(W.U.)=200.22.						
						a. 0.0558.						
1135.82	0+	1035.65 12	100.33	E2		α : 0.00420						
1100102	0.	1000100 12	100 00			α : 0.00420.						
		1135.9 2		E0		$q_{F}^{2}(E0/E2)=1.8$ 7, X(E0/E2)=0.09 4 (2005Ki02)						
						evaluation).						
						$I_{(\gamma+ce)}$: 0.81 19.						
1144.30	8+	463.9 <i>1</i>	100	E2		B(E2)(W.u.)=209 18.						
						α : 0.0254.						
1001 4017	2	001 72 14	0.16.1	52		α : 0.0254.						
1221.4017	2+	891./3 14	0.16 1	E2		B(E2)(W.u.)=0.0339 19.						
						a: 0.00569.						
		1121 290 3	100.0.3	$M1\pm F2\pm F0$	+30 + 6-4	$B(F2)(W_{11}) = 6.74 \ 18$						
		1121.290 5	100.0 5	1011 122 120	150 10-4	$B(M1)(W_{H}) = 2.2 \times 10^{-5} \text{ G}$						
						Mult : E0 component suggested by ce data in 182 Ta						
						β^{-} (1990Ka35)						
						$\delta: 17 + 4-3 (1990 \text{Ka}35).$						
						α: 0.00360.						
						<i>α</i> : 0.00360.						
		1221.395 <i>3</i>	77.80 20	E2		B(E2)(W.u.)=3.40 9.						
						α : 0.00305.						

				γ ⁽¹⁸² W)	(continued)	
\mathbf{E}_{i}^{level}	J_i^π	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments
1257.4144	2+	121.5 2	0.18 5	[E2]		α: 0.00305. B(E2)(W.u.)=2.0×10 ² 6. α: 1.83.
		927.98 7	41.3 15	E2		α: 1.83. B(E2)(W.u.)=1.73 <i>14</i> . δ (M3/E2)=+0.04 <i>14</i> (γγ(θ) in ¹⁸² Ta β ⁻ , 1992Ch26). α: 0.00524. α: 0.00524.
		1157.3 <i>I</i>	35 4	M1+E2	-9 +3-6	a. 0.00324. B(E2)(W.u.)=0.63 8. B(M1)(W.u.)=2.5×10 ⁻⁵ 17. E _γ : from ¹⁸² Re decay (64.0 h). Value of 1157.52 6 from ¹⁸² Ta decay fits poorly. I _γ : from ¹⁸² Re decay (64.0 h). Weighted average from all datasets is 48 5 with $\chi^2 \approx 10$. α: 0.00342 7.
		1257.407 <i>3</i>	100.00 23	E2		α: 0.00342 7. B(E2)(W.u.)=0.91 8. α: 0.00289. α: 0.00289.
1289.1515	2-	31.737 <i>1^a</i>	1.16 23	E1		B(E1)(W.u.)= 4.13×10^{-5} 16. α : 1.628.
		67.74970 <i>10^a</i>	100.0 15	E1(+M2)	< 0.02	α : 1.628. B(E1)(W.u.)=0.00035 . B(M2)(W.u.)=1.5×10 ² . α : 0.215 14.
		959.75 4	0.86 4	M2+E3	-5.5 +19-10	α: 0.215 14. B(E3)(W.u.)=3.58 13. B(M2)(W.u.)=0.00017 12. δ: other: -4.6 +36-Inf (γγ(θ) in ¹⁸² Ta β ⁻ , 1992Ch26). α: 0.0116 7. α: 0.0116 7.
		1189.040 <i>3</i>	41.2 3	E1+M2+E3		B(E1)(W.u.)=1.67×10 ⁻⁸ 10. B(E3)(W.u.)=9.1 9. B(M2)(W.u.)=0.011 2. α : 0.008 7.
		1289.145 <i>3</i>	3.42 4	M2		α: 0.008 7. B(M2)(W.u.)=0.00472 17. α: 0.01231.
1331.1170	3+	1001.72 3	18.02 <i>16</i>	M1+E2	-8.9 +18-21	α: 0.01251. B(E2)(W.u.)=0.0023 . B(M1)(W.u.)=4.2×10 ⁻⁸ . δ: other: -8.2 +22-42 (γγ(θ) in ¹⁸² Ta β ⁻ , 1992Ch26). α: 0.00455 8. α: 0.00455 8.
		1231.004 <i>3</i>	100.0 6	M1+E2	-33 +6-9	a: 0.00455 8. B(E2)(W.u.)=0.0046 . B(M1)(W.u.)=9.7×10 ⁻⁹ . δ: other: +11 +6-3 (γγ(θ) in ¹⁸² Ta β ⁻ , 1992Ch26). α: 0.00301. α: 0.00301
1373.8317	3-	42.72 <i>3^a</i>	4.19 <i>13</i>	E1		B(E1)(W.u.)= $0.00028 \ 4.$ $\alpha: \ 0.720.$ $\alpha: \ 0.720.$
		84.6802 <i>3^a</i>	37.0 13	M1+E2	+0.345 11	B(E2)(W.u.)=230 40. B(M1)(W.u.)=0.033 5. α : 7.66. α : 7.66.

				$\gamma(^{182}W)$	(continued)	
\mathbf{E}_{i}^{level}	J_i^π	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments
	<u>.</u>	116.4179 6 ^a	6.31 5	E1		B(E1)(W.u.)= 2.2×10^{-5} 3. α : 0.253.
		152.4299 <i>3^a</i>	100.0 <i>10</i>	E1		α: 0.253. B(E1)(W.u.)=0.000156 21. δ(M2/E1)=+0.069 17 (1967Ni03, positive sign from 1963E102) from $\gamma(\theta)$ in ¹⁸² Re ε decay; +0.014 13 (1975Qu01); -0.035 5 (1980Sp01); -0.023 4 (1983Ri05); -0.22 11 ($\gamma\gamma(\theta)$ and ce in ¹⁸² Ta β^- ,1992Ch26). All these values (except that from 1975Qu01) give unrealistically large B(M2)(W.u.) values for example B(M2)(W.u.)=150 80 for δ=+0.069 17. RUL(M2)=1 suggests
						$\delta(M2/E1) < 0.007$. The evaluators assign pure E1. α : 0.1258.
		1044.41 5	3.36 10	E1+M2	0.46 9	α : 0.1258. B(E1)(W.u.)=1.36×10 ⁻⁸ 21. B(M2)(W.u.)=0.012 5. α : 0.0051 12.
		1273.719 <i>3</i>	9.46 <i>14</i>	E1+M2+E3		α : 0.0051 <i>12</i> . B(E1)(W.u.)=1.37×10 ⁻⁸ 20. B(E3)(W.u.)=9 2. B(M2)(W.u.)=8×10 ⁻⁴ .
		1373.824 <i>3</i>	3.21 11	E3		α: 0.007 6. α: 0.007 6. B(E3)(W.u.)=5.5 8. α: 0.00496.
1442.832	4+	1113.41 2	100.0 22	M1+E2	+5.6 +13-10	α: 0.00496. B(E2)(W.u.)=10.4 <i>10</i> . B(M1)(W.u.)=0.0010 <i>5</i> .
		1342.720 6	59.7 12	E2		Mult.: from ce data in ¹⁸² Ta β^- , 1990Ka35 suggest M1+E2(+E0) with δ (E2/M1)=20 <i>13</i> . δ (E2/M1)=+1.1 2 from $\gamma\gamma(\theta)$ in ¹⁸² Ta β^- (1992Ch26). α : 0.00376 8. α : 0.00376 8. β (E2)(W.u.)=2.35 23. δ (M3/E2)=-0.11 +4-20 from $\gamma(\theta)$ in ¹⁸² Ta β^- decay is inconsistent with RUL(M3)=10, which suggests that δ should be near zero. α (K)exp in ¹⁸² Re ε decay is consistent with δ (M3/E2)=0 assigned by the evaluators.
						α: 0.00256. α: 0.00256.
1487.5035	4-	44.66 11	1.13 23	[E1]		α : 0.637 10. α : 0.637 10.
		113.67170 22 ^a	71 3	M1+E2	+0.36 3	B(E2)(W.u.)= 1.3×10^2 . B(M1)(W.u.)= 0.036 . α : 3.18.
		156.3864 <i>3^a</i>	100.0 4	E1		α: 3.18. B(E1)(W.u.)=0.00022. δ (M2/E1)=-0.08 5 (γγ(θ) and ce in ¹⁸² Ta β ⁻ , 1992Ch26). α: 0.1177.
		198.3519 <i>3</i> ^a	54.8 11	E2		α: 0.1177. B(E2)(W.u.)=64. δ (M3/E2)=+0.067 <i>10</i> from γ(θ) in ¹⁸² Ta β ⁻ , but RUL(M3)=10 suggests δ (M3/E2) should be near zero. The evaluators assign pure E2. α: 0.317.

 $^{182}_{74}\rm{W}_{108}\text{--}10$

				$\gamma(^{182}W)$	(continued)	
\mathbf{E}_{i}^{level}	J_i^π	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments
		1158.1 <i>I</i>	12.3 6	E1		α: 0.317. B(E1)(W.u.)= 8.4×10^{-8} . δ(M2/E1)=-0.01 +2-1 (γγ(θ) in ¹⁸² Ta β ⁻ , 1992Ch26). I _γ : from ¹⁸² Re decay (64.0 h).
		1387.390 <i>3</i>	2.81 20	M2+E3	2.6 4	α : 1.38×10 ⁻³ . α : 1.38×10 ⁻³ . B(E3)(W.u.)=5.6. B(M2)(W.u.)=0.0019. α : 0.00554 24. α : 0.00554 24.
1510.22	4+	830.1 <i>4</i> 1180.7 <i>2</i>	20 <i>3</i> 100 <i>5</i>	E2+M1	-2.8 10	$\alpha: 0.00364.$
		1410.2 <i>1</i>	48 5	E2		α : 0.0036 4. α : 0.00235.
1553.2256 4-	4-	65.72215 <i>15^a</i>	39.2 9	M1+E2	0.093 6	α : 0.00235. B(E2)(W.u.)=5.0 7. B(M1)(W.u.)=0.0060 3. α : 2.91 5.
		110.39 7	1.31 14	[E1]		α : 2.91 5. B(E1)(W.u.)=(3.70×10 ⁻⁷ 19). α : 0.290.
		179.39381 25 ^a	40.8 6	M1+E2	+0.92 8	α: 0.290. B(E2)(W.u.)=1.89 20. B(M1)(W.u.)=0.000172 16.
		222.1085 <i>3^a</i>	100.0 14	E1		δ: other: +2.2 2 (γγ(θ) and ce in ¹⁶² Ta β ⁻ , 1992Ch26). α: 0.694 23. α: 0.694 23. B(E1)(W.u.)=3.88×10 ⁻⁶ 12. δ(M2/E1)=+0.027 7 (γγ(θ) and ce in ¹⁸² Ta β ⁻ , 1992Ch26). α: 0.0480.
		264.0740 <i>3^a</i>	47.5 5	E2		α: 0.0480. B(E2)(W.u.)=0.698 22. α: 0.1254.
		1223.9 1	2.5 4	E1+M2	0.32 7	α : 0.1254. B(E1)(W.u.)=7.0×10 ⁻¹⁰ <i>10</i> . B(M2)(W.u.)=0.00022 <i>10</i> .
		1453.13 <i>5</i>	0.47 5	M2+E3		δ: other: -0.15 +10-25 (γγ(θ) in ¹⁸² Ta β ⁻ , 1992Ch26). α: 0.0025 5. α: 0.0025 5. B(E3)(W.u.)=0.0174 6. B(M2)(W.u.)=5.73×10 ⁻⁵ 20. I _γ : 27 3 in (α,2nγ) is much higher, probably an impurity. α: 0.0067 24. α: 0.0067 24.
1621.283	5-	111.07 5	4.1 <i>3</i>	M1+F2	+0.39 +1-3	a: 1.96 A
		178.47 5	45.3	E1	⊤0. <i>37</i> ⊤ 4 -3	α : 1.96 4. α : 0.0838.
		247.46.5	100 7	F2		$\begin{array}{c} \alpha: \ 0.0838. \\ \alpha: \ 0.1538 \end{array}$
		1291.8 4	4.6 5	E1+M2	0.4 2	α : 0.1530. α : 0.1538. α : 0.0027 14. α : 0.0027 14.
						α : 0.002/ 14.

 $^{182}_{74}\rm{W}_{108}\text{--}11$

γ ⁽¹⁸² W) (continued)									
\mathbf{E}_{i}^{level}	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments			
		1521.3 4	1.89 20	(E3)		<i>α</i> : 0.00402.			
1623.51	(5)+	943.1 <i>3</i>	14.0 22	E2		α: 0.00402. I _γ : 35 5 in (n,n'γ) is discrepant. $α: 0.00507.$			
		1294.0 <i>3</i>	100.0 19	E2(+M1)	>30	α : 0.00507. α : 0.00274. α : 0.00274			
1660.383	5-	39.1 <i>1</i>	3.7 7	M1+E2	0.061 7	α: 13.6 4. α: 13.6 4.			
		107.13 5	20.1 15	M1+E2	-0.8 2	If I_{γ} : 55.4 <i>i</i> . α : 3.54 <i>l</i> . α : 3			
		150.25 5	7.3 7	(E1)		I_{γ} : 51 10 in (α ,2n γ) is discrepant. α : 0.1305. α : 0.1305.			
		172.87 5	51 3	M1+E2	+0.26 1	I _{γ} : 137 <i>14</i> in (α ,2n γ) is discrepant. α : 0.971. α : 0.971			
		217.55 5	46 <i>3</i>	(E1)		I _{γ} : 93 7 in (α ,2n γ) is discrepant. α : 0.0506. α : 0.0506			
		286.56 5	100 7	E2		α: 0.0976.			
		1330.9 2	5.3 5	E1+M2	0.5 2	α : 0.0976. α : 0.0032 14.			
		1560.4 4	1.02 11	(E3)		α : 0.0032 14. α : 0.00382.			
1711.97	10+	567.5 1	100	E2		α: 0.00382. B(E2)(W.u.)=203 <i>19.</i> α: 0.01543.			
1756.75	6+	313.94 12	7.5 5	E2		α : 0.01543. α : 0.0743.			
		1076.4 <i>1</i>	100 <i>3</i>	E2+M1	+2.56 +9-8	α : 0.0745. α : 0.00444.			
		1427.2 <i>1</i>	92.1 17	E2		α : 0.00444. α : 0.00231.			
1765.54		434.3 2	48 12			<i>α</i> : 0.00231.			
1768.943	6-	544.20 <i>15</i> 108.58 <i>5</i>	100 <i>15</i> 12.6 <i>25</i>	M1+E2	-0.6 2	I _{γ} : 78 6 in (α ,2n γ) is discrepant. α : 3.50 13. α : 2.50 13.			
		145.43 5	11.8 9	(E1)		I _y : 45 10 in $(\alpha, 2n\gamma)$ is discrepant. α : 0.1420. α : 0.1420.			
		147.71 5	16.2 14	M1+E2	+0.8 2	I _{γ} : 49 10 in (α ,2n γ) is discrepant. α : 1.30 9. α : 1.30 9.			
		215.72 5	12.3 24	(E2)		I_{γ} : 65 6 in $(\alpha, 2n\gamma)$ is discrepant. α : 0.240. α : 0.240.			
		281.43 5	100 7	E2		$\alpha: 0.1031.$			
		1088.5 <i>3</i>	3.5 4	E1+M2	0.4 2	α : 0.1031. α : 0.0040 23.			
		1439.3 <i>3</i>	2.81 18	(M2)		α : 0.0040 23. Mult.: E1+M2 from α (K)exp but $\Delta J\pi$ requires M2. α : 0.00930. α : 0.00020			
1769.5	(6+)	1089.0 1440.1				u. 0.00250.			

	$\chi^{(182}W)$ (continued)									
\mathbf{E}_{i}^{level}	J_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\dagger}$	Mult. [‡]	δ^{\ddagger}	Comments				
1809.64	5-	188.54 <i>5</i> 256.42 <i>11</i>	1.38 <i>14</i> 100 <i>8</i>	M1+E2	+0.037 +6-7	α: 0.336.				
1810.85	(6)-	42.0				<i>a</i> : 0.550.				
	(-)	187.34 5	18.4 18	E1+M2	+0.25 +27-20	α: 0.3 7.				
						α: 0.3 7.				
		189.60 7	21.8 18	M1+E2	+0.31 + 15 - 12	α : 0.74 4.				
		323 33 10	100.7	E2		$\alpha: 0.744.$				
		525.55 10	100 /	62		α : 0.0681.				
1813.4		524.2 <i>3</i>	100							
1829.53	6-	19.85 10	0.32 11	M1+E2	0.07 2	$\alpha: 1.3 \times 10^2 \ 3.$ $\alpha: 1.3 \times 10^2 \ 3.$				
		60.65 10	0.91 23							
		169.15 10	100 7	M1+E2	+0.094 6	<i>α</i> : 1.060.				
		206.00.5	455	F1		α : 1.060.				
		206.00 5	4.5 5	EI		$\alpha: 0.0581.$				
		208 26 5	555	M1+E2	-105	$\alpha: 0.43.10$				
		200.20 5	5.5 5	WIT TEZ	1.0 5	α : 0.43 10.				
		276.31 5	77 5	E2		α: 0.1090.				
						α: 0.1090.				
		342.03 10	9.3 7	E2		I _{γ} : 43 4 in (α ,2n γ) is discrepant. α : 0.0579.				
						<i>α</i> : 0.0579.				
1833.1		1733.0 6	100							
1856.06	(2+)	598.56 5	100 11			$\mathbf{E} \cdot \mathbf{from} (\mathbf{n} \mathbf{n}' \mathbf{n}) $ only				
		1756.0.2	10.3			E_{γ} . Irolli (II,II γ) offly. Let 167 40 in (n n' γ) is discrepant				
		1857.3 2	8.0 6	(E2)		E_{γ} : from ¹⁸² Re decay only, poor fit, level-energy difference=1856.1.				
						α : 1.59×10 ⁻³ . α : 1.59×10 ⁻³ .				
1856.9	1	1757.0 6	35 12							
		1856.7 6	100 23							
1871.17	1-	1543 2	≈5							
		1771.0 2	100 10	E1		$\alpha: 1.04 \times 10^{-3}$.				
		1971 2 2	00.7	E1		α : 1.04×10 ⁻³ .				
		18/1.2 2	90 /	EI		$\alpha: 1.06 \times 10^{-3}$				
1887.84		556.7 3	83 25			u: 1.00×10 .				
100/101		666.4 <i>4</i>	46 17							
		1558.5 4	100 25							
1917.05	7-	106.3 1	82							
		148.2 1	10 2							
		160.20 5				E_{γ} : from ¹⁰² Re decay only. This γ is considered as				
						relative to 100 for 295.7 γ is much too high to have missed detection in in hear γ ray study.				
		256.5 1	28 4	Q		missed detection in m-beam y-ray study.				
		295.63 10	100 14	Ē2		<i>α</i> : 0.0888.				
						α : 0.0888.				
1918.6	(2+ to 4+)	1818.5 4	100	$\langle \mathbf{O} \rangle$						
1939.34	(2+)	449.8 <i>3</i> 627 5 <i>4</i>	21 <i>10</i> 50 <i>14</i>	(Q)						
		1629.8 2	100 14							
		1859.1 8	71 24							
		1959.2 10	14 5							

182

				$\gamma(-\mathbf{w})$	(continued)	
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments
1960.30	(7)-	130.81 5	100 7	M1+E2	-0.51 +6-8	α: 2.03 6. α: 2.03 6.
		149.45 5	12.1 10	M1+E2	-0.15 +15-18	α: 1.50 6. α: 1.50 6.
		191.39 5	90 7	M1+E2	-0.23 +6-8	α: 1.304 18. α: 0.734 18. α: 0.734 18.
		203.55 5	6.6 7	(E1)		From $\gamma(\theta)$ in ¹⁸² Re ε decay, 1980Sp01 give $\delta(Q/D)$ =-17 +10-24 or +0.06 +9-4; favoring the former value from δ based on ce data of 1971Ga37. But 1971Ga37 assigned tentative E2 from the re-
						RUL(M2)=1 for $T_{1/2}(1960.30 \text{ level}) < 1 \text{ ns or so.}$ The evaluators assign tentative E1. I _{γ} : 52 4 in (α ,2n γ) is discrepant. α : 0.0599. α : 0.0599.
		299.90 10	20 3	E2		I _{γ} : 61 6 in (α ,2n γ) is discrepant. α : 0.0851. α : 0.0851
		339.04 10	72 10	E2		α: 0.0594. α: 0.0594
1960.78	6-	151.15 5	26 3	M1+E2	0.8 3	α: 1.21 <i>13.</i> α: 1.21 <i>13.</i>
		300.36 10	100 23	M1+E2	+0.048 26	α : 0.218. α : 0.218.
		1279.8 <i>3</i> 1631.4 <i>5</i>	3.6 <i>5</i> 0.74 <i>14</i>	M2+E3	≈2.5	α : $\approx 0.00396.$
1971.04	(7)+	214.31 5	100	M1+E2	+0.25 +8-7	α: ~5.32 15. α: 0.532 15.
1978.35	(7)-	18.05 10	1.9 5	M1+E2	0.016 5	α: 128 4. α: 128 4.
		148.86 5	27.2 20	M1+E2	+0.28 +8-6	α : 1.48 4. α : 1.48 4.
		209.40 5	7.6 8	M1+E2	-0.28 +23-15	I _{γ} : 33 3 in (α ,2n γ) is discrepant. α : 0.56 3. α : 0.56 3.
		221.59 6	100 8	E1		α: 0.0483. α: 0.0483.
		357.04 10	8.4 8	E2		α: 0.0513. α: 0.0513.
1981.82		650.7 <i>3</i> 723.8 <i>7</i>	59 18 26 9 82 24			
1993.68	(7-)	1881.8 8 182.8 5	100 <i>18</i> <11			
2016.8	(2,3,4)+	372.4 <i>1</i> 1688.3 <i>10</i>	100 <i>17</i> 100 <i>33</i>	Q		
2023.57	3-	470.26 5	100 55	M1+E2	0.6 1	α : 0.055 3.
		536.04 5	10.3 16	M1+E2	0.7 2	α: 0.037 4. α: 0.037 4.
		649.73 5	16.8 24	M1+E2	0.8 2	α : 0.0219 23. α : 0.0219 23.
		734.53 5	18.7 22	M1+E2	1.0 3	α : 0.0148 22. α : 0.0148 22.
2057.39	1+	800 <i>1</i> 835.98 <i>5</i>	16 <i>4</i> 50 <i>5</i>	(M1+E2)	≈ 0.8	

 $\gamma(^{182}W)$ (continued)

χ ⁽¹⁸² W) (continued)									
\mathbf{E}_{i}^{level}	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments			
_ i	<u>.</u>	1957 4 2	49.3	(M1+E2)	10 + 6 - 4				
		2057.4 3	100 8	D	1.0 10 1				
2087.43	8-	170.4 <i>1</i>	20 4						
		318.5 1	100 15	Q		<i>α</i> : 0.0716.			
						<i>α</i> : 0.0716.			
2109.96	(2-,3-)	556.7 <i>3</i>	100 28	(E2)		α : 0.01615.			
		2010 1 2	06.10		0.0.7.4	α : 0.01615.			
		2010.1 3	86 12	(E1+M2)	0.9 +7-4	$\alpha: 0.0025 9.$			
		2109 3 5	< 235			α. 0.0025 9.			
2114.35	(8)-	154.10 5	58 13	M1+E2	0.6.3	α : 1.22 12.			
211 1100	(0)	10 1110 0	0010		010 0	α : 1.22 12.			
		197.4 2	23 7						
		285.1 10	46 8						
		345.29 15	100 15	E2		α : 0.0564.			
01164		2016.2.2	100			α : 0.0564.			
2110.4	(8)	2016.3 3	100 78	(M1)		or: 1 242			
2120.23	(8-)	100.1 1	100 18	(1411)		α : 1.245. α : 1.243			
		290 5 1	35.6			u. 1.2+5.			
2131.3	(7-)	362.4 3	100						
2143.0		1813.6 10	100						
2147.95	(3-)	817.0 10	12 4			E_{γ} : from $(n,n'\gamma)$ only.			
		1818.7 2	92 8	(E1)		I_{γ} : 222 33 in (n,n' γ) is discrepant.			
		2047.4 3	100 8	(E1+M2)	1.0 + 10-5	$\alpha: 0.0026 9.$			
		0140.2	24.5	[[2]		α : 0.0026 9.			
2173 5	(0+ to $(1+)$	2148 3	24 3 12 12	[E3]					
2175.5	(0+ t0 4+)	2073 3 3	100.23						
		2174	<23			E_{γ} ; from $(n,n'\gamma)$ only.			
2180.4	(8+)	1036.0							
		1500.0							
2184.04	(2-,3-)	810.24 5	18.2 <i>21</i>	(M1)		<i>α</i> : 0.01639.			
		004055	100.0			α : 0.01639.			
		894.85 5	100 8	(M1)		α : 0.01276.			
		2084 0 3	313			α : 0.01276.			
2204 54	(8)-	2084.0 5	100	M1+E2	+0.15.2	α : 0.468			
2201.31	(0)	220.17 5	100	1011 112	10.15 2	α : 0.468.			
2207.21	(3-)	1877.6 2	58 18	(E1+M2)	-0.28 6	α : 0.00134 12.			
						α: 0.00134 <i>12</i> .			
		2106.8 5	<250						
		2207.7 3	100 9	(E3)		α : 0.00209.			
2200.07	2	92506	22 11			α : 0.00209.			
2209.07	3-	833.9 0	33 <i>11</i> 21 6	E1		E_{γ} : from (fi, fi γ) only.			
		18/9.0 2	21.0	EI		$\alpha: 1.06 \times 10^{-3}$			
		2108.9.4	100 17			α. 1.00×10 .			
		2208.8 6	78 17			E_{γ} ; from $(n,n'\gamma)$ only.			
2212.49	(8+)	241.5 1	100 15	D+Q					
		454.9 4	15 5	-					
2225.35	(8-)	414.5 <i>1</i>	100	Q					
2230.63	(10+)	518.5 <i>1</i>	100 13	(M1)		$B(M1)(W.u.)=6.9\times10^{-8}$ 12.			
						α : 0.0514.			
		1006 5 1	<i>(</i> 0, 7)	(122)		α : 0.0514.			
		1086.5 1	09 /	[E2]		$B(E2)(W.U.)=1.8 \times 10^{\circ} 3.$			
						α : 0.00382.			

 $^{182}_{74}\rm{W}_{108}\text{-}15$

γ ⁽¹⁸² W) (continued)										
\mathbf{E}_{i}^{level}	J_i^π	$\mathrm{E}_{\gamma}{}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	Mult. [‡]	δ^{\ddagger}	Comments				
				·		<i>α</i> : 0.00382.				
2240.83	(3+)	1911.8 2	100 17	(M1)		α: 0.00230.				
		2140.3.2	87 15	(M1)		α : 0.00230.				
		2140.5 2	87 15	(1011)		$\alpha: 0.00197.$				
2273.87	9-	186.5 <i>1</i>	16.7 19							
		356.8 1	100 15	Q						
2274.63	(3)-	787.11 5	86 16	(M1)		I_{γ} : 15 8 in (n,n' γ) is discrepant.				
						$\alpha: 0.01763.$				
		900.80 5	100 17	(M1+E2)	≈ 0.5	α : $\approx 0.01116.$				
						α : $\approx 0.01116.$				
		2175.2 3	13.2 19	E1		$\alpha: 1.14 \times 10^{-3}.$				
2283 5	1	00076	64 20			α : 1.14×10 ⁻⁵ .				
2203.3	1	2283 5 10	100 29							
2301.56	(9-)	181.3 10	18 9							
	. ,	187.6 <i>3</i>	36 9							
		214.2 10	<27							
		341.3 1	109 46							
2316.1	(1.2+)	384.4 <i>1</i> 2216 3	$100 \ 18$ ≈ 275							
2310.1	(1,2+)	2316 3	$\frac{273}{10020}$							
2323.85	(8-)	406.8 2	100							
2327.91	(9-)	207.4 2	73 15	(M1+E2)						
2224.25		213.6 1	100 16							
2334.25	12	333.9 Z	100	F2		$B(E2)(W_{H}) = 101 I0$				
2312.31	12+	000.0 1	100	E2		$\alpha: 0.01085.$				
						α: 0.01085.				
2382.1	1	2282 1	142 20							
2445.00	(0)	2382 1	100	0						
2445.98 2455 74	(9-)	452.5 I 251 2 I	100	(D+O)						
2433.74	()-)	477.1 10	<7	(D Q)						
2474.1	1	2374 1	66 14							
		2474 1	100							
2479.83	(9+)	267.3 1	100 18	D+Q						
2486 89	10-	213.0 I	29.0							
2100.07	10	399.5 2	100 19	Q						
2492.76	(11+)	262.1 <i>1</i>	100	D+Q						
2507.48	(10-)	205.8 2	30 10							
		233.8 10	<20							
		393.4 2	60 10							
		420.0 1	100 20							
2563.94	(10-)	236.0 1	100 16							
2510.02		443.8 2	<8							
2/10.93	11-	224.0 I 437.1 I	24 3	0						
2730.85	(10-)	275.1 1	100 14	(D+O)						
	()	526.2 10	<14	(- • •						
2739.15	(10-)	513.8 <i>1</i>	100	Q						
2741.66	(11-)	440.1 1	100 18	Q						
2760 26	(10+)	40/./ J 280 / 1	55 0 100	D±O						
2107.20	(10+)	557.6 5	39 4	ע⊤ע						
2775.63	(12+)	282.8 1	100	D+Q						

$\underline{\gamma^{(182}W)}$ (continued)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments			
2823.93	(11-)	545.1 2 260.0 <i>1</i> 496.0 5	18 <i>3</i> 100 48 5	Q D+Q					
2884.1	1	2784 1	40 11						
2892.1	(1)	2884 1 2792 1 2892 1	150 <i>90</i>						
2941.0	(12+)	2092 1	100						
2972.49	12-	261.6 2	20.5						
		485.6 1	100 20	0					
2980.58	(11-)	534.6 1	100	ò					
2981.33	(12-)	473.8 1	100 19	-					
		494.6 2	38 6						
2996.1	1	2896 1	168 35						
		2996 1	100						
3027.96	(11-)	297.1 <i>1</i>	100	(D+Q)					
		575.2 20	24 11						
3078.23	(13+)	302.5 1	100	D+Q		$I\gamma(586\gamma)/I\gamma(302)=1.6$ 7 in (α ,2n γ).			
2000 1		585.8 2	47 9	Q					
3080.1	1	2980 I	61 18						
2106 72	(12)	3080 1	100	$(\mathbf{D} \cdot \mathbf{O})$					
5106.72	(12-)	282.8 I 542.5 5	100	(D+Q)					
2112.97	14.	342.5 3	55 U 100	(E2)		$D(E2)(W_{rr}) = 1.7 \times 10^2 5$			
5112.87	14+	740.5 1	100	(E2)		α : 0.00843. α : 0.00843.			
3163.1	1	3063 1	54 12						
		3163 <i>1</i>	100						
3198.1	(1,2+)	3098 1	59 21						
		3198 1	100	_					
3224.53	13-	513.6 1	100	Q					
3269.56	(13-)	527.9 I	100	Q					
3319.7	(12-)	580.6 4	100	$(\mathbf{D} \cdot \mathbf{O})$					
3343.00	(12-)	515.1 I	100 14	(D+Q)					
3365 1	1	3265 1	43 29						
5505.1	1	3265 1	100						
3398 33	(14+)	320.0.1	100	D+O					
5576.55	(1+1)	622.7.1	61 18						
3410.54	(13-)	303.8 /	100 13	X					
	()	586.8 5	88 13						
3415.90	(12)	923.1 <i>I</i>	100	D+Q					
3422.1	(1,2+)	3322 1	53 15						
		3422 1	100						
3518.04	(14-)	536.7 <i>1</i>	100 20						
		545.7 5	40 10						
3549.99	14-	568.6 10	<22						
		577.5 1	100 22	Q					
3567.8	(13-)	587.2 3	100	(Q)					
3601.1	1	3501 1	77 19						
2640.0	(1,2)	3001 I 2640 2	100						
3640.0	(1,2+)	3040 2	100 14						
5077.15	(13)	201.2 I 001 8 2	100 <i>14</i> 21 7						
3727 1	(12+)	3627 2	21 /						
5121.1	(1,27)	3727 2							
3733.85	(14-)	323.3 1	71 10						
2.20.00	(- •)	627.4 5	100 14						
3736.38	(15+)	338.0 1	100						
	. ,								

 $^{182}_{74}\rm{W}_{108}\text{--}17$

	γ ⁽¹⁸² W) (continued)									
\mathbf{E}_{i}^{level}	J_i^{π}	${ m E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments				
3754.87	(15+)	658.2 <i>1</i> 19	94 <i>20</i> ≈0.2	[M1]		B(M1)(W.u.)= 9.8×10^{-7} . I _{γ} : from $\gamma\gamma$ data, I(γ +ce) branching is $\approx 10\%$. α : 107.1.				
		356.5 1	100 17	(M1+E2)		α : 107.1. B(M1)(W.u.)=13.0×10 ⁻⁶ 23. α : 0.09 5.				
		676.8 2	57 13	(E2)		α : 0.09 5. B(E2)(W.u.)=0.00100 23. α : 0.01028. α : 0.01028.				
3807.63	15-	583.1 <i>I</i>	100	0		w. 0.01020.				
3880.06 3882.0	(15-) (1,2+)	610.5 <i>I</i> 3782 2 3882 2	100	Q						
3893.67	(16+)	138.8 1	100	(M1)		B(M1)(W.u.)= 0.00040 . α : 1.86. α : 1.86.				
3910.07	16+	797.2 1	100	E2		B(E2)(W.u.)=204 45. α: 0.00719. α: 0.00719				
3920.0	1	3920.2	100			w. 0.00712.				
3966.23	(14)	289.1 <i>1</i> 550.3 <i>10</i>	100 <i>50</i> 25 <i>13</i>							
4040.6	(17-)	146.9 <i>1</i>	100	(E1)		B(E1)(W.u.)= 2.9×10^{-6} 2. α : 0.1384. α : 0.1384.				
4074.8	(15-)	340.9 <i>2</i> 664.2 <i>5</i>	75 25 100 25							
4078.87	(16+)	324.0 1	100							
4081.5	(16+)	345.1 2 683.2 3	60 <i>20</i> 100 <i>40</i>							
4116.9	(16-)	598.9 2	100							
4197.1	(15-)	629.3 2	100	0						
4211.1	(17+)	001.1 2	100	Q						
4218.1 4280.2	(17+) (15)	314.0 <i>I</i>	100 67							
4202 1	$(17 \downarrow)$	003.1 10	33 17							
4295.1	(17+)	399.4 1	100							
4430 5	(13-) (17+)	351.6.1	100 18							
1150.5	(171)	675.5 11	18.9							
4453.2	(17+)	371.3 10	<33							
		717.3 10	100 33							
4456.2	17-	648.6 2	100	Q						
4569.7	(18+)	351.6 <i>5</i> 676.1 <i>7</i>	100 <i>32</i> 24 <i>8</i>							
4570.9	(17-)	690.8 <i>3</i>	100							
4690.87	18 +	780.8 1	100	Q						
4711.9	(18+)	418.8 <i>1</i> 818.1 <i>6</i>	100 <i>18</i> 64 <i>27</i>							
4748.0	(18+)	837.9 9	100	[E2]		B(E2)(W.u.)= 2.5×10^2 6. α : 0.00648. α : 0.00648.				
4779.6	(18-)	662.7 2	100							
4780.4	(18)	739.8 2	100							
4804.9	(18+)	374.5 2 725.7 5	100 25 50 25							

χ^{182} W) (continued)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	Mult. [‡]	δ^{\ddagger}	Comments			
4820.1	(19-)	398.5 1	100						
		779.9 <i>3</i>	24 11						
4847.4	(18+)	765.9 10	100 33						
		937.3 10	67 <i>33</i>						
4954.8	18-	743.7 10	100						
5148.6	(19+)	436.6 9	100 25						
		855.5 4	<50						
5170.8	19-	714.6 3	100						
5191.8	(19)	411.4 2	100						
5199.6	(19+)	394.7 2	100						
5225.3	(19+)	772.1 10	100						
5235.8	(20-)	415.6 2	100 25						
		814.8 4	75 25						
5338.6	(19-)	767.7 10	100						
5428.6	20+	737.7 2	100						
5618.5	(20)	426.7 2	100						
		838.4 5	50						
5666.9	(21-)	431.2 10	100						
		846.7 10	100						

100

[†] The adopted values represent weighted averages from different studies. In cases where large discrepancies are found, those values were not considered in deducing averages. In $(\alpha, 2n\gamma)$, many such cases are noted where the relative branching ratios are discrepant, generally being much higher than in other studies. For gammas from high-spin levels above 2500 keV, gamma-ray energies and intensities are almost entirely from 176 Yb $(^{13}$ C, α 3n γ) dataset since this dataset provides the most complete set of values. [‡] From ce and angular distribution/correlation studies in 182 Ta decay, 182 Re decay and in-beam γ -ray studies. ^{*a*} From evaluation by 1994HeZZ.

(A) Kπ=0+, g.s. band

 $^{182}_{74}W_{108}$ -20

34

¹⁸²Ta $β^-$ decay (114.43 d) 1992Ch26,1992Su09,1990Ja02

Parent: ¹⁸²Ta: E=0.0; J π =3-; T_{1/2}=114.43 d 4; Q=1814.3 17; % β -=100 Q(g.s.): From 2003Au03. 1992Ch26 (1989Ka01,1989Ka20,1981Ka22 from the same group): measured E γ , I γ , $\gamma\gamma$, ce, $\gamma\gamma(\theta)$, lifetime. For γ rays, HPGe detectors and for electrons mini-orange spectrometer were used. 1992Su09 (also 1993Li03): Measured Ey, Iy, yy coin. 1990Ja02: measured E γ , I γ , $\gamma\gamma$ coin. 1992Yo05: measured $1189\gamma(\theta,H,,T)$, oriented ¹⁸²Ta, search for violation of parity (P), time reversal (T) and PT through measurement of $\gamma\gamma(\theta)$ for 1189 γ from 1289, 2- level which is close in energy to 1221, 2+ level. No results are reported. Other measurements:. 2000He14: Recommended γ -ray energies from evaluation and analysis. 1998Mi17: γ-ray emission probabilities. 1997Ka47: cross sections in 182 Ta(n, γ) and from multi-element standard (MES) technique deduced emission probabilities for 1189 γ and 1221 γ . 1992Ke02: K-x rays and γ rays, emission probabilities. 1991Fa12, 1983Fa18: γ anisotropy vs polarizing field and temperature, deduced quadrupole moment and quadrupole interaction. 1990Me15: Ey, Iy. 1990Ka35: ce, deduced E0 transitions. 1987Ba66: x rays, $\gamma(L x ray)(\theta)$, oriented nuclei, deduced anisotropy. 1987Ka34: $\gamma(\theta, \text{temp})$, deduced electric-field gradient. 1986Wa35: Ey, Iy. 1985Je05: E γ with a crystal spectrometer. 1984He12: Deduced transition energies for ¹⁸²Ta decay. 1983Ri05: $\gamma(\theta,T)$ and $\gamma(\text{lin pol},T)$ on oriented ¹⁸²Ta, low temperature nuclear orientation. 1983El02: E γ , I γ , $\gamma\gamma$, $\gamma\gamma$ (t), deduced α (K)exp's from their measured I γ and using Ice(K)) data from literature. 1983Ji01: Ey, Iy. 1981Al21, 1980Al27: NMR, oriented nuclei in Fe, deduced g factor 1981Is08: Εγ, Ιγ, γγ coin. 1978Bu26: L-subshell ratios for 100γ using magnetic spectrometer. 1977Ka30: ce, penetration parameters. 1976He18: Iy, ce. 1976Kl09: Ey, ce. 1975Bo05: $E\gamma$, curved-crystal spectrometer. 1975Gr15: $\gamma(t)$, $\gamma(ce)(t)$, deduced level lifetime. 1975Qu01: $\gamma\gamma(\theta)$. 1975We22: E γ , I γ , ce, γ (ce)(θ), (ce)(ce)(θ). 1974Ha47: $\gamma\gamma(\theta, H)$, deduced g factor. 1973Be55: K-x rays. 1973El11: ce, Eγ. 1973Mi28: ce. 1973Pi02: Ey. 1973Se14: $\gamma\gamma(\theta)$, $\gamma\gamma(\theta,H)$, deduced g factor. 1973Vi13, 1972Em01: isotopic half-life. 1972Be94: $\gamma\gamma(\theta)$, $\gamma\gamma(\theta,H)$, deduced g factor. 1972Ga23: Ey, Iy. 1972He10: $\gamma\gamma(\theta)$, $\gamma\gamma(\theta,H)$, (ce)(ce)(t), L-subshell ce. 1972Kr05: $\gamma(\theta, \text{temp})$, oriented nuclei. 1972Li11: γ (circ pol), deduced parity admixtures. 1972Si30: $\beta \gamma(\theta)$, $\beta \gamma(\text{circ pol})$, β -longitudinal pol. 1972Si33: $\gamma\gamma(\theta, H)$, deduced magnetic moment. 1971Ho14: β (ce)(t), $\beta\gamma$ (t), deduced level lifetimes. 1971Ml01, 1971Ni02, 1970Ni13: Ey, Iy. 1970Ab14: $\gamma(ce)(t)$, $\beta \gamma(t)$, (ce)(ce)(t), $\beta(ce)(t)$, level lifetimes. 1970El09: ce. 1970Pa33: γγγ(θ). 1970Ro15: $\beta \gamma(\theta)$ for 521-keV β transition. 1970St03: Iy, ce. 1970Wh03, 1969Wh03: Ey, Iy. 1969Sa25: Εγ, Ιγ, γγ coin. 1968Bo01, 1968Bo38: ce data for M/L, K/L, K/L₃ and (N+O)/M ratios for E2 transitions. 1968Ho19, 1968Ni06, 1968Ni07, 1967Ni03: ce for M, K/L, L₃/M₃, M/(N+O+P) for E2 transitions. 1968Me24: $E\gamma$, ce, subshell ratios. 1967Ba01: Eβ, Iβ.
1967Wa29: isotopic half-life. 1966Dz01: Ey, Iy. 1966Ka13: ce for L subshells for E2 transitions. 1966Ко12: Еү, Іү, се. 1966Me13, 1965Me08: $\beta \gamma(t)$, $\beta \gamma \gamma(t)$, $\gamma \gamma(t)$, $\gamma(ce)(t)$, deduced level lifetimes. 1966Ra04: γ (ce)(t), deduced level lifetime. 1965Do02: $\gamma\gamma(t)$ for first 2+ and 2- states in ¹⁸²W. 1965Ed01: Ιγ. 1965Gr16: Εγ, Ιγ. 1965Me08, 1964Ro19, 1964Be36, 1963Ko02, 1963Fo02, 1963Ba24, 1962Ba39: yy(t). 1965Me08, 1964R019, 1964Be36, 1963Ba24, 1961Go24: $\beta \gamma(t)$. 1965He07, 1964Ko07, 1962Se10, 1962Mo15, 1961Vi07, 1961Vi02, 1961Va27, 1961Vo05, 1961Ry03, 1960Gv01: γ. 1964Da15: $E\gamma$, $I\gamma$, $E\beta$, $I\beta$, $\beta\gamma$ coin, ce. 1964Ha28: β , $\beta\gamma$ coin. 1964Ba12, 1964Ba47, 1963St16: ce. 1963El08: yy coin. 1963Ko02, 1963Kl04: γγ(θ,Η). 1963Ko02: γγ(θ,H,t). 1963Kl04, 1963El02, 1960Hi02: γγ(θ). References prior to 1960:. 1959Vo27, 1958Be73, 1957Su01, 1955Mu19, G. Backstrom: Arkiv Fysik 10, 387 (1956), C.M. Fowler et al.: Phys Rev 94, 1082 (1954): y. 1959Si84: yy coin. 1955Su64: $\gamma\gamma$ (t). 1955Mu19, 1959Si84, J. Demuynck et al.: Compt Rend. 244, 3050 (1957), S. Jnanananda: J. Sci. Ind. Research (India) 8B, 147 (1949) :β. 1958Sp17, 1958Ke26, 1957Wr37, 1952Ei12, 1951Si25: isotopic half-life. 1959Si84: $\beta \gamma$ coin. 1954Su10: $\beta \gamma(t)$.

1983E102 report 15 new transitions and 5 new levels that are not included here because the evaluators consider the identification tenuous due to poor energy fits and, in some cases, intensities large enough that they should not have been missed in other studies.

The 351 γ ray deexciting the 680 level has been observed although that level cannot be directly populated by β^- decay. No transitions feeding that level have been confirmed although weak feeding from higher lying 4+ states is likely.

			¹⁸² W Levels
E(level)	$J^{\pi\dagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	0+		
100.1065 3	2+	1.40 ns 2	$T_{1/2}$: weighted average of 1.27 ns 10 (1955Su64,1954Su10), 1.55 ns 11 (1963Ba24), 1.26 ns 4 (1963Fo02), 1.41 ns 6 (1963Ko02), 1.47 ns 9 (1964Ro19), 1.4 ns 1 (1964Be36), 1.39 ns 3 (1965Do02), 1.37 ns 3 (1965Me08), 1.45 ns 4 (1966B108), 1.35 ns 7 (1966Fu03), 1.43 ns 5 (1966Ra04), 1.48 ns 3 (1970Ab14), 1.380 ns 20 (1971Ho14), 1.55 ns 5 (1973GrXX), 1.38 ns 3 (1983El02). See also Adopted Levels, where 1.381 ns 10 is recommended from all independent measurements using a variety of techniques.
329.4287 10	4+	<0.20 ns	$T_{1/2}$: from 1971Ho14.
680.48 10	6+		./ ~
1135.9 2	0+		
1221.4110 17	2+		
1257.4232 18	2+		
1289.1610 17	2-	1.12 ns 4	$T_{1/2}$: weighted average (normalized residuals method) of 1.06 ns 2 (1970Ab14), 1.22 ns 2 (1971Ho14), 1.17 ns 8 (1983El02), 1.09 ns 4 (1989Ka01).
1331.1267 17	3+	<0.6 ns	$T_{1/2}$: from 1965Me08.
1373.8418 17	3-	78 ps 10	$T_{1/2}^{(1)}$: from 1972He10. Others: 2.25 ns 8 (1962Ba39), >140 ps (1971Ho14).
1442.83 5	4+		
1487.5144 17	4-	<49 ps	$T_{1/2}$; from 1972He10. Other: <120 ps (1971Ho14).
1510.21 10	4+	1	
1553.2364 17	4-	1.27 ns 4	$T_{1/2}$: weighted average of 1.35 ns 4 (1970Ab14), 1.23 ns 2 (1971Ho14), 1.20 ns 6 (1972He10) and 1.35 ns 3 (1983El02).

[†] From Adopted Levels.

[‡] From delayed coincidence techniques.

	γ ⁽¹⁸² W)												
${ m E}_{\gamma}^{\ddagger}$	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	$I_{\gamma}^{\dagger \$}$	Mult. ^{<i>φ</i>}	δ	α^{ψ}	Comments				
31.737 <i>1</i> 42.72 <i>3</i>	1289.1610 1373.8418	2- 3-	1257.4232 1331.1267	2+ 3+	1.9 5 0.827 24	E1 E1		1.628 0.720	E _γ : from 1992Su09. 42.72+44.66 form doublet				
44.66 11	1487.5144	4-	1442.83	4+	0.085 17				structure. E_{γ} : from 1992Su09. 42.72+44.66 form doublet				
65.72215 15 ^a 67.74970 10 ^a 84.68024 26 ^a 100.10595 7 ^a	1553.2364 1289.1610 1373.8418 100.1065	4- 2- 3- 2+	1487.5144 1221.4110 1289.1610 0.0	4- 2+ 2- 0+	8.4 2 114.0 <i>17</i> 7.4 <i>1</i> 39.2 <i>7</i>	M1+E2 E1+M2 M1+E2 E2	0.093 6 <0.02 +0.345 11 ^c	2.91 <i>5</i> 0.215 <i>14</i> 7.66 3.89	structure. E_{γ} : other: 67.75016 <i>12</i> (1985Je05). δ : +0.32 <i>3</i> from A ₂ =-0.25 <i>4</i> (1983Ri05). Mult.: L1/L2=0.0823 <i>13</i> , L2/L3=1.126 <i>10</i> (1978Bu26)				
110.39 7 113.67170 22^a 116.4179 6^a 121.5 2^b	1553.2364 1487.5144 1373.8418 1257.4232	4- 4- 3- 2+	1442.83 1373.8418 1257.4232 1135.9	4+ 3- 2+ 0+	0.28 <i>3</i> 5.30 <i>9</i> 1.25 <i>1</i> 0.0075 <i>21</i>	[E1] M1+E2 E1 [E2]	+0.36 <i>3^c</i>	0.290 3.18 0.253 1.83 0.1258	δ : +0.36 2 from A ₂ =-0.324 21 (1983Ri05)				
152.42991 26"	1373.8418	3-	1221.4110	2+	19.8 2	EI		0.1258	δ: +0.069 <i>I</i> / (1967/Ni03, positive sign from 1963El02); -0.035 5 (1980Sp01); +0.014 <i>I3</i> (1975Qu01); -0.22 <i>I1</i> (1992Ch26); -0.023 <i>4</i> (1983Ri05). None of these values is consistent with RUL(M2)=1 which suggests δ <0.006. The evaluators assign δ =0 as in Adopted Gammas. (152G)(THETA): A2=+0.392 6, P̂OL=-0.33 <i>3</i> (1983RI05). (152γ)[892γ](229γ)(θ): A2=-0.14 5, A4=-0.8 6 (1992Ch26): A2=-0.11 4, A4=-0.01 <i>L</i> (1981Ka22)				
156.3864 <i>3^a</i>	1487.5144	4-	1331.1267	3+	7.53 3	E1		0.1177	δ (M2/E1)=-0.053 4 from A ₂ =+0.411 7, POL=-0.36 9 (1983Ri05). (156γ)[1002γ](229γ)(θ): A ₂ =-0.06 2, A ₄ =+0.03 2 (1992Ch26); A ₂ =-0.05 2, A ₄ =+0.02 2 (1981Ka22). δ: -0.08 5 (1992Ch26).				
179.39381 25 ^a	1553.2364	4-	1373.8418	3-	8.76 4	M1+E2	+0.92 8 ^c	0.694 23	δ: +2.2 2 (1992Ch26). $ δ: +2.1 +3-2 \text{ from } A_2=-0.706 19, \text{ POL}=+0.17 10 $ (1983Ri05). (179γ)[1044γ](229γ)(θ): $A_2=+0.11 2, A_4=-0.30 2$ (1992Ch26): $A_2=+0.15 2, A_4=+0.02 3$ (1981K ₂ 22)				
198.35187 29 ^a	1487.5144	4-	1289.1610	2-	4.13 3	E2		0.317	$\delta(M3/E2) = +0.067 \ 10 \ \text{from } A_2 = -0.519 \ 10,$ POL=-0.43 9 (1983Ri05), but RUL(M3)=10 suggests				
222.1085 <i>3^a</i>	1553.2364	4-	1331.1267	3+	21.4 3	E1		0.0480	$ δ ≈ 0. $ $ δ ≈ 0.27 7 (1992Ch26). $ $ A_2=+0.358 10, POL=-0.34 8 (1972Kr05) $ $ (222\gamma)[1002\gamma](229\gamma)(θ): A_2=-0.026 2, A_4=-0.052 3 $ $ (1992Ch26); A_2=-0.046 14, A_4=-0.032 19 $ $ (1981Ka22). $ $ (222\gamma)(1002\gamma)(θ): A_2=+0.27 8, A_4=+0.33 11 $ $ (1992Ch26). $ $ (222\gamma)(1231\gamma)(θ): A_2=-0.030 6, A_4=-0.015 8 $ $ (1992Ch26); A_2=-0.031 3, A_4=-0.001 2 (1981Ka22); $ $ A_2=-0.020 12, A_4=+0.010 15 (1975Ou01). $				
229.3207 6 ^a	329.4287	4+	100.1065	2+	10.32 4	E2		0.196	$\delta(M_3/E_2) = +0.007 7$ from A ₂ =-0.508 7, POL=-0.27 12 (1983Ri05).				
264.0740 <i>3^a</i> 351.02 <i>7</i> 829.9 <i>4</i>	1553.2364 680.48 1510.21	4- 6+ 4+	1289.1610 329.4287 680.48	2- 4+ 6+	10.20 7 0.330 <i>1</i> 0.040 7	E2 E2		0.1254 0.0538	POL=-0.33 14 (1983Ri05).				

 $^{182}_{74}\mathrm{W}_{108}\text{--}24$

	$\underline{\gamma^{(182}W)}$ (continued)												
${\rm E}_{\gamma}^{\ddagger}$	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	$I_{\gamma}^{\dagger\$}$	Mult. [¢]	δ	α^{ψ}	Comments				
891.62 8 928.01 7	1221.4110 1257.4232	2+ 2+	329.4287 329.4287	4+ 4+	0.159 <i>9</i> 1.76 <i>4</i>	E2 E2		0.00569 0.00524	α (K)exp=0.0039 2 (1992Ch26). (928 γ)(229 γ)(θ): A ₂ =+0.18 6, A ₄ =+0.11 1 (1992Ch26).				
959.73 3	1289.1610	2-	329.4287	4+	0.98 5	M2+E3	-5.5 +19-10	0.0116 7	δ: +0.04 14 (1992Ch26). α(K)exp=0.0095 6. α(L)exp=0.0019 2 (1992Ch26). δ: -4.6 +36-∞ (1992Ch26). (960γ)(229γ)(θ): A ₂ =+0.31 14. A ₄ =-0.46 20				
1001.72 3	1331.1267	3+	329.4287	4+	5.95 2	M1+E2	-8.9 +18-21 ^c	0.00455 8	(1992Ch26). α (K)exp=0.0034 2. α (L)exp=0.00049 4. δ : -8.2 +22-42 (1992Ch26), -30 +18-54 (1983Ri05). A_2 =+0.26 3, POL=+0.58 23 (1983Ri05). (1002 γ)(229 γ)(θ): A_2 =+0.12 3, A_4 =-0.10 4 (1992Ch26).				
1035.8 2^b 1044.41 5	1135.9 1373.8418	0+ 3-	100.1065 329.4287	2+ 4+	0.019 <i>5</i> 0.67 <i>1</i>	E2 E1+M2	0.46 9	0.00420 0.0051 <i>12</i>	α (K)exp=0.0048 <i>3</i> (1992Ch26). (1044 γ)(229 γ)(θ): A ₂ =-0.11 <i>6</i> , A ₄ =+0.16 <i>8</i>				
1113.41 2	1442.83	4+	329.4287	4+	1.22 3	M1+E2	+5.6 +13-10	0.00376 8	(1992Ch26). δ : +1.1 2 (1992Ch26). δ : from A ₂ =+0.127 <i>13</i> (1983Ri05). (1113 γ)(229 γ)(θ): A ₂ =-0.12 2, A ₄ =+0.09 3				
1121.290 <i>3^a</i>	1221.4110	2+	100.1065	2+	100.0 <i>3</i>	M1+E2	+30 +6-4°	0.00360	(1992Ch26); A ₂ =-0.11 <i>I</i> , A ₄ =+0.12 <i>I</i> (1981Ka22). α (K)exp=0.0030 <i>I</i> . α (L)exp=0.00054 <i>2</i> (1992Ch26). δ : from A ₂ =+0.088 <i>6</i> , POL=+0.03 <i>4</i> (1983Ri05). α (pair)/ α (K)=0.00029.				
1135.9 2 ^b 1157.52 6	1135.9 1257.4232	0+ 2+	0.0 100.1065	0+ 2+	2.01 7	E0 M1+E2	-9 +6-3 ^c	0.0034 3	I(ce(K))=0.00013 4. α (K)exp=0.0077 4 (1992Ch26). E _γ : 1157.5γ and 1158.1γ are close together, most precise energy of the doublet is given by 1990Me15 as 1157.505 15. The evaluators have adopted energy of 1157.52 6 from 1992Su09 (who give separate values for the doublet as 1157.52 and 1158.1 2, the latter γ ray deexcites the 1487 level). It should be pointed out that the energy deviates from the level-energy difference by 0.2 keV. I _γ : from 1992Su09. 1157.50+1158.1 form doublet				
1158.1 2	1487.5144	4-	329.4287	4+	0.82 5	E1		1.38×10 ⁻³	structure: δ: -0.01 +20-10 (1992Ch26). (1158γ)(229γ)(θ): A ₂ =+0.20 4, A ₄ =+0.04 5 (1992Ch26). E _γ : from 1992Su09. 1157.50+1158.1 form doublet				
1180.7 <i>2</i> 1189.040 <i>3^a</i>	1510.21 1289.1610	4+ 2-	329.4287 100.1065	4+ 2+	0.21 <i>5</i> 47.0 <i>3</i>	E2(+M1) E1+M2+E3 ^d	-2.8 10	0.0036 <i>4</i> 0.008 <i>7</i>	structure. $\alpha(K)\exp=0.0037$ 3. $\alpha(L)\exp=0.00061$ 3. I _{γ} : 16.7 2 per 100 decays (1997Ka47) as compared to 16.4 3 from the level scheme presented here.				

39

NUCLEAR DATA SHEETS

 $^{182}_{74}\mathrm{W}_{108}$ -25

γ ⁽¹⁸² W) (continued)												
${\rm E}_{\gamma}^{\ddagger}$	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	$I_{\gamma}^{\dagger \$}$	Mult. $^{\phi}$	δ	α^{ψ}	Comments			
1221.395 <i>3^a</i>	1221.4110	2+	0.0	0+	77.8 2	E2		0.00305	δ (M2/E1)=+0.44 6, δ(E3/E1)=-0.69 10 from A ₂ =-0.884 19, POL=+0.13 3 (1983Ri05). α(pair)/α(K)=0.0022. I _γ : 26.5 3 per 100 decays (1997Ka47) as compared to 27.1 5 from the level scheme presented here. POL=-0.34 9 (1983Ri05). α(K)=0.0025 used for normalization of ce data			
1223.5 3	1553.2364	4-	329.4287	4+	0.47 7	E1+M2	0.32 7	0.0025 5	(1992Ch26). α (pair)/ α (K)=0.0028. δ : -0.15 +10-25 (1992Ch26). (1223 γ)(229 γ)(θ): A ₂ =+0.23 3, A ₄ =+0.11 9			
1231.004 <i>3^a</i>	1331.1267	3+	100.1065	2+	33.0 2	M1+E2	-33 +6-9 ^c	0.00301	(1992Ch26). α (K)exp=0.0023 <i>1</i> . δ : +11 +6-3 (1992Ch26). δ : from A ₂ =-0.067 <i>12</i> , POL=-0.24 <i>12</i> (1983Ri05).			
1257.407 3 ^a	1257.4232	2+	0.0	0+	4.28 1	E2		0.00289	$\alpha(\text{pair})/\alpha(\mathbf{K})=0.0024.$ $\alpha(\mathbf{K})\exp=0.00032\ 2.$ POL=-0.36 9 (1983Ri05). $\alpha(\text{pair})/\alpha(\mathbf{K})=0.008$			
1273.719 <i>3</i> ^a	1373.8418	3-	100.1065	2+	1.873 7	E1+M2+E3 ^d		0.007 6	α (K)exp=0.0024 3. α (L)exp=0.00047 4 (1992Ch26). α (K)exp=0.00291 5. δ (M2/E1)=+0.36 10, δ (E3/E1)=-0.28 12 from A ₂ =-0.37 6, POL=-0.39 5 (1983Ri05).			
1289.145 <i>3^a</i>	1289.1610	2-	0.0	0+	3.90 4	M2		0.01231	$\alpha(\text{pair})/\alpha(\text{K}) = 0.014.$ $\alpha(\text{L})\exp=0.0019 \ 2.$ POL=+0.39 12 (1983Ri05). $\alpha(\text{pair})/\alpha(\text{K}) = 0.0009$			
1342.720 6	1442.83	4+	100.1065	2+	0.727 5	E2		0.00256	α (L)exp=0.00030 6. δ (M3/E2)=-0.11 +4-20 from A ₂ =-0.33 12, POL=-0.57 18 (1983Ri05) is inconsistent with RUL(M3)=10, which suggests that δ should be near zero. The evaluators assign pure E2 as in Adopted Gammas			
1373.824 <i>3^a</i>	1373.8418	3-	0.0	0+	0.63 1	E3		0.00496	α (pair)/ α (K)=0.013. α (K)exp=0.0036 3. α (L)exp=0.00074 4 (1992Ch26)			
1387.390 <i>3^a</i> 1410.6 <i>5</i> 1453.13 <i>5</i>	1487.5144 1510.21 1553.2364	4- 4+ 4-	100.1065 100.1065 100.1065	2+ 2+ 2+	0.208 7 0.111 6 0.10 <i>1</i>	M2+E3 E2 M2+E3	2.6 4	0.00554 24 0.00235 0.0067 24	$\alpha(\text{E}) \alpha = 0.00074 \ \ (19)2\text{Ch26}).$ $\alpha(\text{K}) \exp = 0.0040 \ \ \ (1992\text{Ch26}).$ $\alpha(\text{pair})/\alpha(\text{K}) \approx 0.026.$ $\alpha(\text{K}) \exp = 0.0028 \ \ \ (1992\text{Ch26}).$			

 † For absolute intensity per 100 decays, multiply by 0.349 6.

[‡] Weighted average of values from 1994KaZL, 1992Su09, 1990Ja02, 1990Me15, 1989Ka20, 1988Wa26, and 1985GoZK, using the lwm method, unless otherwise stated.

[§] Weighted average of values from 1998Mi17, 1992Ch26, 1992Su09, 1990Ja02, 1990Me15, 1989Ka20, 1983El02, 1983Ji01, 1980Ro22, 1980Sc07, 1979Hn02, 1977Ge12, 1975Be26, and 1974La15 using LWM method, unless otherwise stated.

^{ϕ} Derived from relative Ice values and $\gamma\gamma(\theta)$ measurements of 1967Ni03, 1983Ri05, 1972Kr05, 1961Ha23, 1963El02, 1971Ga37, 1972He10, 1975Qu01, 1980Sp01, and 1981Ka22.

40

 $\psi \alpha(\text{pair})/\alpha(\text{K})$ from 1966Ko12. ^{*a*} Recommended value from 2000He14 (evaluation and analysis).

 $^{182}_{74}\rm{W}_{108}\text{--}26$

^{*b*} Transitions deexciting the 1136 level were only reported by 1976K109 and 1992Su09. E γ , I γ , and mult are from ce data. The 121.5 γ feeding the 1136 level has not been observed. E γ is from the level energy difference, and I(γ +ce) is deduced from the requirement of an intensity balance at the 1136 level. I γ (121.5) is then deduced from I(γ +ce) and the assumed E2 multipolarity.

^c Sign from $\gamma\gamma(\theta)$ measurements of 1983Ri05, 1972Kr05; magnitude from these measurements and ce data. ^d From pol $\gamma\gamma(\theta)$ measurement of 1983Ri05.

	β^{-}	radiations	
$\mathrm{E}eta^-$ †	E(level)	I β^-	Log ft
246	1553.2364	29.3 4	7.49 2
(304.1)	1510.21	0.125 5	10.07 <i>3</i>
(326.8)	1487.5144	1.8 4	9.02 12
(371.5)	1442.83	0.587 7	9.69 <i>1</i>
408	1373.8418	20.5 8	8.39 2
(483.2)	1331.1267	2.20 6	9.49 2
531	1289.1610	39.7 12	8.35 2
(556.9)	1257.4232	0.88 11	10.09 6
591	1221.4110	4.0 10	9.53 <i>13</i>
1470	329.4287	0.096 <i>10</i> ‡	12.57 5
1713	100.1065	0.058 6‡	13.02 5

[†] From 1966Ba41, 1964Ha28, 1966Ve05, and 1964Da15.

[‡] From 1966Ba41.

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{182}_{74}\rm{W}_{108}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Muonic atom 1970Hi03

```
182W Levels
```

E(level) Iπ $T_{1/2}$

1.33 ns 5 B(E2)=4.29 12. T_{1/2}: from B(E2).

Comments

$^{182}\mathbf{Re}\ \varepsilon$ decay (64.0 \hbar) 1977Je02,1961Ha23,1972Ga15

Parent: ¹⁸²Re: E=0.0; J π =7+; T_{1/2}=64.0 h 5; Q=2.80×10³ 10; % ϵ =100 1977Je02: Measured E γ , I γ , $\gamma\gamma$.

1961Ha23: Measured ce.

0 100

1972Ga15 (also 1971Ga30): Measured E γ , I γ , $\gamma\gamma$. The ce data were used from 1970Ag07 and 1961Ha23.

1971Ga37, 1970Ag07 (from the same group): measured conversion electrons using an iron-free $\pi 2^{1/2} \beta$ spectrometer.

1969Sa25: Measured E γ , I γ , $\gamma\gamma$. Deduced conversion coefficients using ce data from 1961Ha23.

Others:.

1980Sp01: Measured $\gamma(\theta, \text{temp})$, nuclear orientation at low temperature.

1964Ba43: Measured ce. Relative electron intensities measured for about 14 transitions from 734 to 1189 keV. No conversion coefficients given.

1958Ga24: Measured E γ , ce.

Unless otherwise stated, experimental conversion coefficients are from 1972Ga15 who deduced these from their γ -ray intensities and ce data from 1961Ha23, 1964Ba43 and 1970Ag07. The ce data from 1971Ga37 (supplementary to those from their earlier publication 1970Ag07) were probably not available to 1972Ga15.

¹⁸² W Levels												
E(level)	$\mathrm{J}^{\pi\dagger}$	E(level)	$\mathrm{J}^{\pi\dagger}$	E(level)	$J^{\pi\dagger}$	E(level)	$J^{\pi\dagger}$	E(level)	$J^{\pi\dagger}$			
0.0	0+	1289.15 5	2-	1553.22 5	4-	1809.66 7	5-	1971.09 8	(7)+			
100.11 4	2+	1331.13 6	3+	1621.27 5	5-	1810.89 6	(6)-	1978.37 6	(7)-			
329.44 5	4+	1373.81 5	3-	1623.54 6	(5)+	1829.53 5	6-	2114.43 7	(8)-			
680.50 10	6+	1442.81 5	4+	1660.37 5	5-	1916.94 <i>11</i>	(7)-	2120.53 8	(8-)			
1221.37 5	2+	1487.50 5	4-	1756.77 6	6+	1960.33 6	(7)-	2204.56 8	(8)-			
1257.52 5	2+	1510.21 7	4+	1768.95 <i>5</i>	(6)-	1960.79 8	6-					

[†] From Adopted Levels.

γ (¹⁸² W)		
A2 values and W(0°)-1 anisotropies are from low-temperature nuclear orientation study of 1	980Sp01.	

E_{γ}^{\ddagger}	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	$I_{\gamma}^{\dagger \ddagger}$	Mult. [§]	δ^{\S}	α	Comments
18.05 10	1978.37	(7)-	0.48 12	M1+E2	0.016 5	128 4	
19.85 10	1829.53	6-	0.14 5	M1+E2	0.07 2	1.3×10^2 3	
31.7 <i>I</i>	1289.15	2-	1.0 2	E1		1.63 <i>3</i>	
39.1 <i>1</i>	1660.37	5-	1.0 2	M1+E2	0.061 7	13.6 4	L1/L2>8.7 (1971Ga37).
42.0	1810.89	(6)-					
42.7 1	1373.81	3-	1.8 4	E1		0.721 12	
60.65 10	1829.53	6-	0.4 1	[M1]		3.48	
65.8 1	1553.22	4-	11.2 22	M1+E2	0.093 6	2.90 5	L1/L2=7.9 7, L1/L3 \approx 16, L2/L3 \approx 2, M1/M2 \approx 8 (1971Ga37)
67.85 10	1289.15	2-	86 9	E1(+M2)	< 0.02	0.215 14	(1971Ga37) L1/L2=2.8 4, L1/L3=2.1 4, L2/L3=0.76 14
84.68 5	1373.81	3-	10.7 6	M1+E2	+0.345 11	7.66	$\alpha(\text{K})\exp \approx 6.0 \ (1971\text{Ga37}), \ \alpha(\text{L1})\exp=1.15 \ 35; \ \alpha(\text{L2})\exp=0.46 \ 14; \ \alpha(\text{L3})\exp=0.34 \ 10. \ \text{L1/L2}=2.40 \ 14, \ \text{L1/L3}=3.2 \ 3, \ \text{L2/L3}=1.36 \ 12, \ \text{M1/M2}=2.3 \ 4, \ \text{M1/M3}=2.5 \ 5 \ \text{M2/M3}=1.1 \ 3 \ (1971\text{Ga37}).$
100.10 5	100.11	2+	63.8 17	E2		3.89	$\Delta I\gamma$ (absolute)=0.4 per 100 decays.

					γ ⁽¹⁸² W) (co	ontinued)	
Eγ [‡]	\mathbf{E}_{i}^{level}	J_i^{π}	$I_{\gamma}^{\dagger \ddagger}$	Mult. [§]	$\delta^{\$}$	α	Comments
<u>, </u>	<u>.</u>	<u> </u>	<u> </u>				I _γ : calculated from the intensity balance at the 100 level. Measured value is Iγ=580 40. W(0°)-1=-0.057 25. α(L1)exp=0.11, 0.091 19; α(L2)exp=1.17 35, 1.08 13; α(L3)exp=1.05 32, 1.04 13. L1/L2=0.078 8, L1/L3=0.083 9, L2/L3=1.07 6
107.13 5	1660.37	5-	5.5 4	M1+E2	-0.8 2	3.54 13	(1970Ag07). W(0°)-1=+0.54 8. α (K)exp=2.3 7 for 107.1 γ +108.6 γ (1971Ga37). L1/L2=0.74 8, L1/L3=1.09 16, L2/L3=1.6 3
108.58 <i>5</i>	1768.95	(6)-	3.1 2	M1+E2	-0.6 2	3.50 13	(1971Ga37). W(0°)-1=+0.55 <i>15</i> . α (K)exp=2.3 7 for 107.1 γ +108.6 γ , M1/M2=2.1 9
110.38 5	1553.22	4-	0.4 4	[E1]		0.290	(19/16a37).
111.07 5 113 68 5	1621.27 1487 50	5- 4-	0.81 6 18 9 <i>12</i>	[E1] M1+F2	+0.36.3	0.286	$W(0^{\circ})$ -10 122 15
115.00 5	1407.30		10.9 12	W117L2	+0.30 3	5.16	
116.23 5	1373.81	3-	2.0 2	E1		0.254	(1)/10/03/).
130.81 5	1960.33	(7)-	29.0 20	M1+E2	-0.51 +6-8	2.03 6	$W(0^{\circ})-1=+0.410 \ 9.$
133.80 5	1621.27	5-	9.3 6	M1+E2	+0.39 +4-3	1.96 4	$W(0^{\circ})$ -1=-0.153 <i>17</i> .
145.43 5	1768.95	(6)-	2.6 2	(E1)		0.1420	$W(0^{\circ})-1=+0.06 \ 9.$
147.69 5	1768.95	(6)-	3.5 3	M1+E2	+0.8 2	1.30 9	α (K)exp=0.11 4 (1971Ga37). W(0°)-1=-0.31 6. α (K)exp=0.96 30 for 147.6 γ +148.8 γ +149.4 γ , L1/L2=1.6 4, L1/L3=2.8 19, L2/L3=1.8 8
148.86 <i>5</i>	1978.37	(7)-	6.8 5	M1+E2	+0.28 +8-6	1.48 4	(1971Ga37). W(0°)-1=-0.12 6. α (K)exp=0.96 30 for 147.6 γ +148.8 γ +149.4 γ (1971Ga37)
149.45 5	1960.33	(7)-	3.5 3	M1+E2	-0.15 +15-18	1.50 6	W(0°)-1=+0.23 11. α (K)exp=0.96 30 for 147.6 γ +148.8 γ +149.4 γ ,
150 25 5	1660 37	5-	202	(F1)		0 1305	K/L2=37 25 (1971Ga37). $W(0^{\circ})=1=\pm0.10$ 17
151.15 5	1960.79	6-	1.7 2	M1+E2	0.8 3	1.21 13	$\alpha(K) \exp \approx 0.32.$ $\alpha(K) \exp \approx 0.17 5 \text{ for } 151.1\gamma + 152.4\gamma + 153.9\gamma,$
152.43 5	1373.81	3-	33.0 20	E1		0.1258	L1/L2=2.1 6, L1/L3>9.8, L2/L3>5.0 (1971Ga37). α (K)exp=0.116 35. W(0°)-1=-0.14 3. L1/L2 \approx 4.3, K/L2 \approx 28 (1971Ga37). Solve 0.00 (2017 for α (20) by a basis of 0.14 (20) 1.
154.10 <i>5</i>	2114.43	(8)-	0.9 <i>3</i>	M1+E2	0.6 3	1.22 12	δ: +0.069 I/ from γ(θ) data, but RUL(M2)=1 suggests δ near zero. α(K)exp=0.17 5 for $151.1γ+152.4γ+154.0γ(1971Ga37).L1/L2=2.9 8, L1/L3=3.3 10, L2/L3=1.2 5$
156.39 5	1487.50	4-	28.0 20	E1		0.1177	(1971Ga37). W(0°)-1=+0.119 6. $\alpha(1.1)\exp(-0.0096.36)$
160.20 5 ^b	1916.94	(7)-	0.93 6 ^b				a(11)cap=0.0070 50.
160.20 5 ^b	2120.53	(8-)	0.93 6 ^b	(M1)	0.071	1.243	α (K)exp ≈ 0.92 (1971Ga37).
169.15 5	1829.53	6-	44 3	M1+E2	+0.094 6	1.060	W(0°)-1=+0.051 5. α(K)exp=0.87 21; α(L1)exp=0.140 17. L1/L2=10 4, L1/L3>27, L2/L3>2.5, M1/M2=9.9 18, M1/M3=38 21, M2/M3=4.4 24 (1971Ga37).

	γ ⁽¹⁸² W) (continued)												
Eγ [‡]	E ^{level}	\mathbf{J}_i^{π}	$I_{\gamma}^{\dagger \ddagger}$	Mult. [§]	δ^{\S}	α	Comments						
172.87 5	1660.37	5-	13.9 9	M1+E2	+0.26 1	0.971	W(0°)-1=-0.079 9. α(K)exp=0.67 11 (1970Ag07). L1/L2=7.1 8, L1/L3=17 3, L2/L3=2.4 6,						
178.47 5	1621.27	5-	8.8 5	E1		0.0838	M1/M2=4.9 14 (19/1Ga37). $W(0^{\circ})-1=+0.102$ 20. $\alpha(K)=0.010$ 4 (1971Ga37)						
179.40 5	1553.22	4-	11.7 7	M1+E2	+0.92 8	0.694 23	W(0°)-1=-0.299 <i>12</i> . L1/L2=1.99 <i>19</i> , L1/L3=3.0 <i>3</i> , L2/L3=1.50 <i>19</i>						
187.34 <i>5</i> 188.54 <i>5</i>	1810.89 1809.66	(6)- 5-	1.25 <i>12</i> 0.51 5	E1+M2	+0.25 +27-20	0.3 7	$W(0^{\circ})$ -1=-0.07 14.						
189.65 5	1810.89	(6)-	1.5 7	M1+E2	+0.31 +15-12	0.74 4	$W(0^{\circ})$ -1=-0.10 8. $\alpha(K)$ exp=0.077 19 (1971Ga37).						
191.39 5	1960.33	(7)-	26.0 20	M1+E2	-0.23 +6-8	0.734 18	$W(10^{\circ})-1=+0.129$ 9. $\alpha(K)\exp=0.66$ 15; $\alpha(L1)\exp=0.098$ 30, 0.077 8; $\alpha(L2)\exp=0.0081$ 7; $\alpha(L3)\exp\approx0.002$						
198.34 5	1487.50	4-	15.7 13	E2		0.317	W(0°)-1=-0.182 12. α(K)exp=0.20 4. L1/L3=0.66 34 (1970Ag07). δ: +0.067 10 from $\gamma(\theta)$ data, but RUL(M3)=10						
203.55 5	1960.33	(7)-	1.9 2	(E1)		0.0599	suggests o near zero. W(0°)-1=+0.07 6. δ : from $\gamma(\theta)$, 1980Sp01 give $\delta(Q/D)$ =-17 +10-24 or +0.06 +9-4; favoring the former value from δ based on ce data of 1971Ga37. But 1971Ga37 (also 1972Ga15) assigned tentative E2 from $\alpha(K)$ exp=0.15 3 (1971Ga37) and questioned the placement and mult assignment. $\delta(M2/E1)$ =-17 +10-24 will be inconsistent with RUL(M2)=1 for T _{1/2} (1960.33 level)<1 ns or so. The evaluators arcsion tentative E1						
206.00 5	1829.53	6-	2.0 2	E1		0.0581	$W(0^{\circ})-1=+0.14$ 6. $g(K)avp \simeq 0.047$ (1071Ga27)						
208.26 5	1829.53	6-	2.4 2	M1+E2	-1.0 5	0.43 10	$W(0^{\circ})-1=+0.52$ 6. $g(1^{\circ})-1=+0.52$ 6.						
209.40 5	1978.37	(7)-	1.9 2	M1+E2	-0.28 +23-15	0.56 3	$W(0^{\circ})$ -1=+0.39 <i>10</i> . α (K)exp=0.53 <i>15</i> , 0.35 <i>11</i> ; α (L1)exp=0.074 <i>14</i> .						
214.32 5	1971.09	(7)+	4.3 3	M1+E2	+0.25 +8-7	0.532 15	L1/L3>3 (1970Ag07). W(0°)-1=-0.07 5. α (K)exp=0.44 13, 0.42 8; α (L1)exp=0.065 19, 0.064 9. L1/L2=8.7 10 (1971Ge37)						
215.73 5	1768.95	(6)-	3.0 2	(E2)		0.240	$W(0^{\circ})$ -1=-0.17 7.						
217.55 5	1660.37	5-	12.7 8	(E1)		0.0506	$W(0^{\circ})$ -1=+0.117 20 $W(0^{\circ})$ -1=+0.117 20 $W(10^{\circ})$ -1=+0.117 20						
221.61 5	1978.37	(7)-	25.0 20	E1		0.0483							
222.07 5	1553.22	4-	33 <i>3</i>	E1		0.0480	(1970Ag07). W(0°)-1=+0.122 3 for 221.6+222.1. α (K)exp=0.050 10 for 221.6 γ +222.1 γ (1970Ag07).						
226.19 5	2204.56	(8)-	11.9 8	M1+E2	+0.15 2	0.468	L1/L2>4 (1970Ag07). W(0°)-1=-0.004 15. α(K)exp=0.50 15, 0.41 6; α(L1)exp=0.059 18, 0.058 5.						
229.32 5	329.44	4+	100.0	E2		0.196	L1/L2=7.8 8, L1/L3>24, L2/L3>3 (1971Ga37). α(K)exp=0.117 30, 0.124 16. W(0°)-1=-0.154 3.						

	γ ⁽¹⁸² W) (continued)												
Eγ [‡]	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	$I_{\gamma}^{\dagger \ddagger}$	Mult. [§]	δ^{\S}	α	Comments						
							L1/L2=0.55 13, L1/L3=0.080 20, L2/L3=1.5 3						
0.15.14.5	1 (01 07	-	10 4 12	50		0.1500	(1970Ag07).						
247.46 5	1621.27	5-	19.6 13	E2		0.1538	$W(0^{\circ})-1=-0.183$ 4. $\alpha(K)$ evp=0.088 22 I 1/I 2=0.66 13 I 1/I 3=1.04 23						
							$L_2/L_3=1.6 \ 3 \ (1970 \text{Ag}07).$						
256.45 5	1809.66	5-	37 <i>3</i>	M1+E2	+0.037 +6-7	0.336	W(0°)-1=+0.099 3.						
							α (L1)exp=0.040 7, L1/L2>7.7, L1/L3>38						
264 07 5	1553 22	4-	13 0 0	F2		0.1254	(19'/0Ag0'). $W(0^{\circ}) = -0.182.7$						
204.07 5	1555.22	4-	13.7 9	62		0.1234	$\alpha(K) \exp = 0.076 \ 16 \ (1970 \text{Ag} 07).$						
							L1/L2=0.50 11, M1/M2=0.8 4, M1/M3=1.1 7,						
076015	1000 50	-	24.0.20	50		0.1000	M2/M3=1.5 8 (1971Ga37).						
2/6.31 5	1829.53	6-	34.0 20	E2		0.1090	$W(0^{\circ})-1=-0.194$ 4. $\alpha(K)_{0}=0.078$ 24. 0.073 6: $\alpha(L_1)_{0}=0.0105$ 11:						
							$\alpha(L_2) \exp[-0.078/24, 0.075/0, \alpha(L_1) \exp[-0.0105/11, \alpha(L_2) \exp[-0.0105/11]]$						
							L1/L2=0.74 6, L1/L3=1.10 10, L2/L3=1.49 13						
001 45 5	15 60 05	(5)	00.1.15	50		0.1001	(1970Ag07).						
281.45 5	1768.95	(6)-	22.1 15	E2		0.1031	$W(0^{\circ})-1=-0.1885$.						
							(1971Ga37 1970Ag07)						
286.56 5	1660.37	5-	27.4 18	E2		0.0976	$W(0^{\circ})$ -1=-0.193 4.						
							α(K)exp=0.069 19 (1970Ag07).						
							L1/L2=0.77 15, L1/L3=1.23 23, L2/L3=1.6 3						
295.67.10	1916.94	(7)-	0.8.3	(E2)		0.0888	(19/10a37).						
299.90 10	1960.33	(7)-	4.9 10	E2		0.0851	W(0°)-1=-0.064 8 for 299.9+300.4.						
							L1/L3=1.35 6 (1970Ag07).						
300.36 10	1960.79	6-	6.6 15	M1+E2	+0.048 26	0.218	W(0°)-1=-0.064 8 for 300.4+299.9.						
212 09 10	1756 77	6	212	E2		0.0742	α (K)exp=0.23 6.						
515.98 10	1/30.//	0+	5.1 2	E2		0.0742	$\alpha(L_2) = 0.183$. $\alpha(L_2) = 0.09025 L_1/L_2 = 0.8320 L_1/L_3 = 228$						
							$L_2/L_3=2.7$ 10 (1971Ga37).						
323.40 10	1810.89	(6)-	6.8 5	E2		0.0681	W(0°)-1=-0.165 14.						
							α (K)exp=0.059 <i>10</i> ; α (L1)exp=0.0067 <i>10</i> ;						
							$\alpha(L_2) \exp[0.0058 T t]$. $\alpha(L_1) \exp[0.007 2, L_1/L_2] = 0.97 T 8, L_1/L_3 = 1.6 5.$						
							L2/L3=1.7 5 (1970Ag07).						
339.06 10	1960.33	(7)-	21.6 14	E2		0.0594	W(0°)-1=-0.173 5.						
							α (K)exp=0.058 20, 0.038 8; α (L1)exp=0.0052 8;						
							$\alpha(L2)\exp=0.0069 \ 10$; $\alpha(L3)\exp=0.0058 \ 15$; $0.0055 \ 0.$						
							(1970Ag07).						
342.03 10	1829.53	6-	4.1 3	E2		0.0579	W(0°)-1=-0.20 4.						
345 46 10	2114 43	(8)	102	F2		0.0563	α (K)exp=0.038 5. W(0°) 1 - 0.28 18						
545.40 10	2114.43	(0)-	1.7 2	62		0.0505	α (K)exp=0.053 19 (1971Ga37).						
351.07 10	680.50	6+	40 3	E2		0.0538	α (K)exp=0.038 12, 0.045 7; α (L1)exp=0.0050 5;						
							α (L2)exp=0.0057 7; α (L3)exp=0.0028 7, 0.0032 5.						
							L1/L2=0.99 <i>11</i> , L1/L3=1.82 <i>25</i> , L2/L3=1.85 <i>25</i>						
							$W(0^{\circ})-1=-0.154$ 4.						
357.04 10	1978.37	(7)-	2.1 2	E2		0.0513	$W(0^{\circ})$ -1=-0.22 3.						
							α(K)exp=0.032 13 (1970Ag07).						
891.9 <i>1</i>	1221.37	2+	0.13 2	E2		0.00569							
928.0 I 043 2 3	1257.52	(5)	1.44 <i>15</i> 0.88 <i>14</i>	E2 F2		0.00524	$\alpha(K) \exp = 0.0036 \ I0, \ 0.0047 \ I3, \ 0.011 \ 5.$						
959.7 1	1289.15	(3)+ 2-	0.78 15	M2+E3	-5.5 +19-10	0.0116 7	$\alpha(K) \exp[-0.0060\ 24,\ 0.012\ 3.\ \approx 0.012.$						
1001.7 1	1331.13	3+	9.6 3	M1+E2	-8.9 +21-18	0.00455 8	α (K)exp=0.0046 5, 0.0046 6, 0.0047 10.						
1011 -	10-55				0.44.0		W(0°)-1=+0.102 9.						
1044.4 <i>1</i>	1373.81	3-	1.11 4	E1+M2	0.46 9	0.0051 12	α (K)exp=0.0053 10, 0.0061 12, \approx 0.0057.						

	γ ⁽¹⁸² W) (continued)												
Eγ [‡]	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	$I_{\gamma}^{\dagger \ddagger}$	Mult. [§]	δ^{\S}	α	Comments						
1076.2 2	1756.77	6+	41.0 12	E2+M1	+2.56 +9-8	0.00444	$\overline{W(0^{\circ})-1}=-0.001 \ 3.$ $\alpha(K)\exp=0.0037 \ 4, \ 0.0036 \ 4, \ 0.0041 \ 8.$ $1/(2-78 \ 9. \ 1/(3-23 \ 5. \ 1.2/(3-3.1.9)(1970Ag07))$						
1088.5.3	1768.95	(6)-	0.77.8	E1+M2	0.4.2	0.0040 23	α (K)exp=0.0034 6 (1971Ga37.1970Ag07).						
1113.3 1	1442.81	4+	18.3 4	M1+E2	+5.6 + 13-10	0.00376.8	$W(0^{\circ})-1=+0.029$ 4.						
							α (K)exp=0.0035 4, 0.0036 7.						
							L1/L2=6.7 15, L1/L3>16, L2/L3>2.3 (1970Ag07).						
1121.3 <i>I</i>	1221.37	2+	85.5 25	M1+E2	+30 +6-4	0.00360	α(K)exp=0.00302 14, 0.0030 3, 0.0032 5. L1/L2=6.8 6, L1/L3=11.8 12, L2/L3=1.8 2 (1970Ag07).						
							$W(0^{\circ})$ -1=+0.004 6.						
1157.3 <i>1^a</i>	1257.52	2+	1.44 <i>15^a</i>	M1+E2	-9 +3-6	0.00342 7	α(K)exp=0.0061 <i>12</i> . W(0°)-1=-0.12 <i>3</i> for 1157.3+1158.1.						
1158.1 <i>I</i> ^a	1487.50	4-	3.43 <i>17^a</i>	E1		1.38×10^{-3}	A_2 =-1.35 24. Contribution from another component						
							was cons. W(0°)-1=-0.12 3 for 1158.1+1157.3. α (K)exp=0.0021 7.						
1180.8 <i>3</i>	1510.21	4+	2.15 10	E2(+M1)	-2.8 10	0.0036 4	$W(0^{\circ})-1=+0.156$ 18.						
							$\alpha(K) \exp \approx 0.0018 \ (1970 \text{Ag} 07)$						
1189.0 <i>1</i>	1289.15	2-	35.1 10	E1+M2+E3		0.008 7	α(K)exp=0.0043 5, 0.0041 8, 0.0047 9. W(0°)-1=-0.243 9.						
							L1/L2=6.1 8, L1/L3=32 5, L2/L3=5.3 12						
1001 4 1	1001.07	2	(7714	50		0.00205	(1970 Ag 07).						
1221.4 1	1221.37	2+	6/./ 14	E2		0.00305	$W(0^{\circ})$ -1=-0.103 0. 1 1/1 2-67 7 1 1/1 2-20 2 1 2/1 2-2 1 5 (1070 Å ~07)						
							$\alpha(K) = 0.0248 25 0.0026 5$						
1223 9 <i>1a</i>	1553 22	4-	$1.02.13^{a}$	E1+M2	0 32 7	0.0025.5	a(n)cxp=0.00246 25, 0.0020 5.						
1231.0 1	1331.13	3+	57.9 11	M1+E2	-33 +6-9	0.00301	α (K)exp=0.0025 3 (1971Ga37).						
							$W(0^{\circ})-1=-0.020$ 4.						
1257.5 <i>I</i>	1257.52	2+	4.14 12	E2		0.00289	$\alpha(K) \exp \approx 0.0049.$						
							$W(0^{\circ})$ -1=-0.095 19.						
1273.8 <i>I</i>	1373.81	3-	3.67 17	E1+M2+E3		0.007 6	α (K)exp=0.0052 24.						
1279.8 3	1960.79	6-	0.24 3										
1289.2 2	1289.15	2-	2.94 6	M2		0.01230	α (K)exp=0.0114 <i>18</i> , \approx 0.012.						
1201.9.4	1601 07	5	0.01.0	$E1 \cdot M2$	0.4.2	0.0027.14	$W(0^{\circ}) - 1 = -0.172$ 18. $\alpha(K) = -0.00205$ 10						
1291.8 4	1623.54	3- (5)	0.91 9 6 27 12	E1+M2 E2(+M1)	> 30	0.0027 14	$W(0^{\circ}) = 0.00205 \ I_{2}.$						
1294.0 5	1023.34	(3)+	0.27 12	E2(+1411)	/30	0.00274	$\alpha(K) = -0.00210.19$						
							δ : >+30 or <-60.						
1330.9 2	1660.37	5-	1.46 13	E1+M2	0.5 2	0.0032 14	α (K)exp ≈ 0.0014 (1971Ga37)						
1342.7 <i>1</i>	1442.81	4+	10.0 25	E2		0.00256	W(0°)-1=-0.190 11.						
							α (K)exp=0.0024 4, 0.0021 8.						
1373.8 <i>I</i>	1373.81	3-	1.15 4	E3		0.00496	α (K)exp=0.011 5.						
1387.4 <i>1</i>	1487.50	4-	1.03 10	M2+E3	2.6 4	0.00554 24	α (K)exp=0.0030 11.						
1410.1 <i>I</i>	1510.21	4+	1.08 7	E2		0.00235	$W(0^{\circ})$ -1=-0.18 5.						
1407.0.0	1956 99		20.1.7	52		0.00001	α (K)exp=0.0019 6.						
1427.3 2	1/56.//	6+	38.1 /	E2		0.00231	$W(0^{\circ})-1=-0.203$ 3.						
1/30 3 3	1768 05	(6)-	0.62.4	(M2)		0.00030	$\alpha(\mathbf{K}) \exp[-0.00169 I_3, 0.0018 0]$						
1737.3 3	1700.75	(0)-	0.02 4	(1912)		0.00750	Mult.: $\alpha(K)$ exp gives E1+M2 or E2, but $\Delta J\pi$ requires						
1453.1 <i>1</i>	1553.22	4-	0.15 3	M2+E3		0.0067 24	α (K)exp=0.0043 13 (1971Ga37).						
1521.3 4	1621.27	5-	0.37 4	(E3)		0.00402	α (K)exp=0.0032 6, 0.0050 15.						
1560.4 4	1660.37	5-	0.28 3	(E3)		0.00382	$\alpha(K) \exp = 0.0055 \ 17, \approx 0.0028.$						
1631.4 5	1960.79	6-	0.049 9	M2+E3	≈ 2.5	≈0.00396	α (K)exp=0.0054 20, ≈ 0.0016 .						

[†] For absolute intensity per 100 decays, multiply by 0.258 7. [‡] For $E\gamma < 84$, values are from ce data of 1961Ha23 normalized assuming using E2 for the 100.1 γ , energy uncertainty of 0.1 keV is assumed by the evaluators. For $E\gamma=85-357$ from 1977Je02, and for $E\gamma > 357$ from 1972Ga15. For $\Delta I\gamma$ (absolute) combine 5.5% in quadrature with $\Delta I\gamma$ (relative), except as noted.

[§] From ¹⁸²Ta β⁻ decay; ce data in 1971Ga37, 1970Ag07 and 1961Ha23; and $\gamma(\theta, \text{temp})$ data of 1980Sp01. The conversion data were normalized to 100.1γ with E2 multipolarity. ^{*a*} Calculated from adopted branching ratios. ^{*b*} Multiply placed with undivided intensity.

	ε,	β^+ radiatons	5	
Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$
(595.44)	2204.56	4.5 3	7.46 19	4.5 3
(679.47)	2120.53	0.47 8	8.56 17	0.47 8
(685.57)	2114.43	1.03 19	8.23 17	1.03 19
(821.63)	1978.37	24 5	7.03 16	24 5
(828.91)	1971.09	1.70 13	8.19 <i>13</i>	1.70 13
(839.21)	1960.79	2.8 6	7.99 16	2.8 6
(839.67)	1960.33	23 5	7.1 2	23 5
(883.06)	1916.94	0.46 9	8.82 14	0.46 9
(970.47)	1829.53	14 4	7.42 16	14 4
(989.11)	1810.89	0.7 5	8.7 4	0.7 5
(990.34)	1809.66	7.1 23	8.26 25	7.1 23
(1031.05)	1768.95	< 0.18	>9.4	< 0.18
(1043.23)	1756.77	16.4 8	7.42 10	16.4 8
(1139.63)	1660.37	< 0.6	>9.6	< 0.6
(1176.46)	1623.54	< 0.31	>9.3	< 0.31
(1178.73)	1621.27	1.9 <i>12</i>	9.2 4	1.9 12
(2119.50)	680.50	< 0.7	>9.4	< 0.7

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
%ε + %β + =100.0 2204.56 204.56 204.56 204.56 204.56 204.56 204.56 204.56 201.09 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01 201.01	10011
Image: state	
$\begin{array}{c} & \otimes \\ & \otimes \\$	2+

 $\frac{Decay\ Scheme}{Intensities: 1_{(\gamma + e_{\gamma})}\ per\ 100\ parent decays}$ & Multiply placed: undivided intensity given

 $^{182}_{74}\mathrm{W}_{108}$

Decay Scheme (continued)

Intensities: $1_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

¹⁸²**Re** ε decay (12.7ħ) 1971Ga37,1969Ga23,1969Sa25

Parent: ¹⁸²Re: E=0+x; J π =2+; T_{1/2}=12.7 h 2; Q=2.80×10³ 10; % ϵ =100

1971Ga37, 1970Ag07 (both papers from the same group): measured conversion electrons using an iron-free $\pi 2^{1/2} \beta$ spectrom-

eter. 1969Ga23: Measured E γ , I γ , $\gamma\gamma$ and γ (ce) coin. Deduced conversion coefficients from their γ -ray data and ce data of 1961Ha23

and 1964Ba43. 1969Sa25: Measured E γ , I γ , $\gamma\gamma$. Deduced conversion coefficients from their γ -ray data and ce data from 1961Ha23.

1980Sp01: Measured $\gamma(\theta, \text{temp})$, nuclear orientation at low temperature.

1961Ha23: Measured ce.

Others:. 1964Ba43: Measured ce. Relative electron intensities measured for about 14 transitions from 734 to 1189 keV. No conversion coefficients given.

1963Ba37: Measured E β .

1959Ga15: Measured $E\gamma$, $I\gamma$.

The decay scheme is primarily that proposed by 1971Ga37.

			1	⁸² W Levels			
E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
0.0	0+	1373.91 5	3-	2057.47 7	1+	2208.94 18	3-
100.11 4	2+	1442.83 11	4+	2109.80 21	(2-,3-)	2240.83 15	(3+)
329.42 5	4+	1487.61 5	4-	2116.4 3		2274.73 6	(3)-
1221.49 5	2+	1553.33 5	4-	2147.98 17	(3-)	2316.1 22	
1257.45 5	2+	1856.02 7	(2+)	2173.3 3			
1289.24 5	2-	1871.17 <i>15</i>	1-	2184.12 6	(2-,3-)		
1331.24 6	3+	2023.66 5	3-	2207.17 15	(3-)		

[†] From least-squares fit to $E\gamma$'s. The 1857.3 γ was not used in the fitting procedure due to poor agreement in energy. [‡] From Adopted Levels.

 $\gamma(^{182}W)$ Additional unplaced transitions were reported by all authors. Only those unplaced transitions are listed here which are reported by more than one author.

For A₂ values from $\gamma(\theta, \text{temp})$, see ¹⁸²Re ε decay (64.0 h).

$E_{\gamma}^{\$}$	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	$I_{\gamma}^{\dagger \phi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
67.75	1289.24	2-	120 5	E1		0.202	E_{γ} : based on values in Adopted Levels, Gammas dataset. This most intense but lowest-energy transition is not reported in this decay.
84.68 5	1373.91	3-	8.4 7	M1+E2	+0.345 11	7.66	I I I I I I I I I I I I I I I I I I I
100.12 5	100.11	2+	45 <i>3</i>	E2		3.89	$\Delta I\gamma$ (absolute)=0.4 per 100 decays.
113.70 5	1487.61	4-	1.3 2	M1+E2	+0.358 28	3.18	
116.40 5	1373.91	3-	1.1 3	E1		0.253	
152.43 5	1373.91	3-	22.0 19	E1		0.1258	α (K)exp=0.17 5 for 151.1 γ +152.4 γ +154.0 γ (1971Ga37).
156.38 5	1487.61	4-	1.7 <i>3</i>	E1		0.1177	
179.38 5	1553.33	4-	0.92 17	M1+E2	+0.92 8	0.694 23	
198.36 5	1487.61	4-	0.55 8	E2		0.317	
222.08 5	1553.33	4-	2.17 17	E1		0.0480	
229.32 5	329.42	4+	8 1	E2		0.196	
264.08 5	1553.33	4-	0.90 12	E2		0.1254	
470.26 5	2023.66	3-	6.3 <i>3</i>	M1+E2	0.6 1	0.055 3	α (K)exp=0.051 <i>14</i> (1970Ag07). L1/L2 \approx 13 (1971Ga37).
536.04 5	2023.66	3-	0.65 10	M1+E2	0.7 2	0.037 4	α (K)exp=0.044 <i>13</i> (1970Ag07).
555 1	2109.80	(2-,3-)	0.35 10	(E2)		0.01627	$\alpha(K) \exp < 0.018 \ (1970 \text{Ag} 07).$
598.56 5	1856.02	(2+)	1.23 13	(M1)		0.0354	α (K)exp=0.035 <i>13</i> (1970Ag07).
649.73 5	2023.66	3-	1.06 15	M1+E2	0.8 2	0.0219 23	α (K)exp=0.028 <i>12</i> (1970Ag07).
734.53 5	2023.66	3-	1.18 14	M1+E2	1.0 3	0.0148 22	α (K)exp=0.026 <i>12</i> (1970Ag07).
787.11 5	2274.73	(3)-	0.95 18	(M1)		0.01763	α (K)exp=0.019 <i>13</i> (1970Ag07).

					γ ⁽¹⁸² W) (con	ntinued)	
Eγ [§]	\mathbf{E}_{i}^{level}	J_i^π	$\mathrm{I}_{\gamma}^{\dagger \phi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
800 1 ^b	2057.47	1+	$0.47 \ 12^{b}$				
810.24.5	2184.12	(2-3-)	1.20 14	(M1)		0.01639	$\alpha(K) \exp[0.014 \ 7 \ (1970 \text{Ag} 07)]$
835.98.5	2057.47	1+	1.45 15	(M1+E2)	≈ 0.8	0101002	$\alpha(K) \exp[0.015 \ 8 \ (1971 Ga 37.1970 Ag 07)]$
894.85 5	2184.12	(23-)	6.6.5	(M1)		0.01276	$\alpha(K) \exp[0.013 \ 2 \ (1971 \text{Ga}37)]$.
900.80.5	2274.73	(3)-	1.11 79	(M1+E2)	≈ 0.5	≈0.01116	$\alpha(K) \exp[0.015, 5, (1971Ga37), 0.025, 16, (1970Ag07)]$
927.99 5	1257.45	2+	1.62 17	E2		0.00524	
959.81 5	1289.24	2-	1.7 4	M2+E3	-5.5 +19-10	0.0116 7	
1001.8 1	1331.24	3+	≈ 0.7	M1+E2	-8.9 +18-21	0.00455 8	
1044.5 <i>1</i>	1373.91	3-	0.55 7	E1+M2	0.46 9	0.0051 12	
1113.4 <i>I^c</i>	1442.83	4+	$1.1 \ 2^{c}$	M1+E2	+5.6 +13-10	0.00376 8	
1121.4 <i>I</i>	1221.49	2+	100	M1+E2	+30 +6-4	0.00359	
1189.2 <i>1</i>	1289.24	2-	47.3 19	E1+M2+E3		0.008 7	
1221.5 <i>1</i>	1221.49	2+	78 <i>3</i>	E2		0.00305	$\Delta I\gamma$ (absolute)=1.4 per 100 decays.
1231.1 <i>1</i>	1331.24	3+	4.11 20	M1+E2	-33 +6-9	0.00300	α (K)exp=0.0025 <i>3</i> (1971Ga37).
1257.3 <i>1</i>	1257.45	2+	4.39 19	E2		0.00289	
1273.8 <i>1</i>	1373.91	3-	1.66 14	E1+M2+E3		0.007 6	
1289.3 <i>1</i>	1289.24	2-	3.85 17	M2		0.01230	$\Delta I\gamma$ (absolute)=0.08 per 100 decays.
1373.9 <i>1</i>	1373.91	3-	0.56 6	E3		0.00496	
1410.4 <i>3</i>	Unplaced		0.12 2				
1523 2	Unplaced		≈ 0.05				
1537 2	Unplaced		≈ 0.05				
1543 2	18/1.17	1-	≈ 0.05				
1558 2	Unplaced	(2)	0.24 3				
1/56.0 2	1856.02	(2+)	0.19 4				$\alpha(K) \exp (1071G_{37})$
1/5/.0	Unplaced		1 0 1 1 0			1.0.4 10-3	α (K)exp>0.00046 (19/1Ga37).
17/1.0 2	18/1.17	1-	1.01 10	EI		1.04×10^{-5}	α (K)exp=0.00055 <i>16</i> (19/1Ga37).
1818.8 2	2147.98	(3-)	0.33 3	(EI)		4 70 40 3	α (K)exp=0.00054 24 (19/1Ga37).
1857.3 2	1856.02	(2+)	0.099 7	(E2)		1.59×10^{-5}	α (K)exp=0.0014 8 (19/1Ga37).
				-		1 0 1 10 3	E_{γ} : poor fit in the level scheme, deviates by 1 keV.
1871.2.2	18/1.17	1-	0.91 7	EI	0.0 ()	1.06×10^{-5}	α (K)exp=0.00054 20 (1971Ga37).
18//.6 2	2207.17	(3-)	0.19 6	(E1+M2)	0.8 + 4 - 3	0.0026 8	α (K)exp=0.0021 13 (19/1Ga3/).
18/9.6 2	2208.94	3-	0.17 5	EI		1.06×10 ³	α (K)exp=0.0005 3 (19/1Ga37).
1911.8 2	2240.83	(3+)	0.139 24	(MI)	10.01	0.00230	α (K)exp=0.0021 8 (19/1Ga37).
1957.4 2	2057.47	1+	1.43 10	(M1+E2)	1.0 + 0.4	0.0025.0	$\alpha(\mathbf{K}) \exp[=0.0022 / (19/1Ga3/).$
2010.1 3	2109.80	(2-,3-)	0.304	(E1+M2)	0.9 + 7.4	0.0025 9	α (K)exp=0.0019 <i>II</i> (19/1Ga37).
2010.5 5	ZII0.4		2.5 5				$\alpha(\mathbf{K})\exp[=0.0020\ 0\ (19/10a5/).$
2033.3 3	2147 08	(2)	≈ 0.07	$(\mathbf{E1} \cdot \mathbf{M2})$	1.0 ± 10.5	0.0026.0	$\alpha(K) \exp \approx 0.00000 (19/1Ga37).$
2047.3 3	2147.98	(3-)	2 00 23	(L1+W12)	1.0 +10-5	0.0020 9	$\alpha(\mathbf{K})\exp[-0.0020, 0, (1771)Gas7]$.
2037.4 3	2037.47	1+	2.90 23				$\alpha(\mathbf{K}) \exp[-0.0044 \ IS (19710aS7)]$.
2073 2 3	2173 3		0.13.2				$\alpha(K) \exp \simeq 0.002 (1971Ga37)$
2073.2 3	2175.5	(2 - 3 -)	0.13 2				$\alpha(K) \exp \sim 0.002 (1971Ga37)$
2099 3	Unplaced	(2,5)	≈ 0.08				$\alpha(K) \exp(-0.00039 (1971 Ga 37))$
$2106.8.5^{a}$	2207.17	(3-)	$< 0.82^{a}$				$\alpha(K) \exp \{0.00050 (1971Ga37)\}$
$2108.6 5^{a}$	2208.94	3-	$< 0.82^{a}$				$\alpha(K) \exp > 0.0004$ (1971Ga37).
$2109.3 5^{a}$	2109.80	(23-)	$< 0.82^{a}$				$\alpha(K) \exp > 0.0011$ (1971Ga37).
2140.3 2	2240.83	(3+)	0.121 21	(M1)		0.00197	$\alpha(K) \exp[0.0017 \ 8 \ (1971Ga37)]$.
2148 3^{b}	2147.98	(3-)	0.088 19	ĪE31			
2175.2.3	2274 73	(3)-	0.147 21	E1		1.14×10^{-3}	$\alpha(K) \exp(-0.00039) (1971Ga37)$
2189 3 ^b	Unplaced	(0)	0.055.15				
2207.7 3	2207 17	(3-)	0.33 3	(E3)		0.00209	$\alpha(K) \exp(-0.0014 \ 7 \ (1971 \ Ga37))$
2216 3 ^b	2316.1	(\mathbf{J})	$\approx 0.07^{b}$	(1.5)		0.00207	w(11) on p=0.001+ / (1)/1003/).
2210 J 2220 Jb	Linnload		~ 0.07				
2230 3 2216 2h	2216^{-1}		0.034 10				
2.11U J	4.110.1		(1,1/2,1,1)				

[†] For absolute intensity per 100 decays, multiply by 0.320 *16*. [‡] From ¹⁸²Ta β^- decay for transitions from levels below 1800 keV. Transitions from higher levels were derived from $\alpha(K)$ data of 1971Ga37. Interpretation of data from 1971Ga37 is ambiguous because M1+E2 and E1+M2 were experimentally indistinguishable.

§ From ce data of 1971Ga37 (also 1970Ag07) unless otherwise stated

 $^{\phi}$ Weighted averages of values from 1969Ga23 and 1969Sa25. The uncertainties from 1969Ga23 were increased substantially to reflect the poor agreement of that data with 1969Sa25. For $\Delta I\gamma$ (absolute) combine 5.1% in quadrature

with $\Delta I\gamma$ (rel), except as noted. ^{*a*} Energy from ce data of 1971Ga37. The γ -ray intensity is 0.82 5 combined for E γ =2109.3 10 (1969Sa25), 0.82 8 for 2110 2 (1969Ga23) corresponding to a triplet (2106.8+2108.6+2109.3) from conversion electron data.

^b From 1969Ga23. ^c From 1969Sa25.

ε, β^+ radiatons									
Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$	Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$
(483.9+x)	2316.1	0.0304 22	8.72 24	0.0304 22	(776.34+x)	2023.66	3.10 21	7.17 14	3.10 21
(525.27+x)	2274.73	0.72 10	7.43 22	0.72 10	(928.83+x)	1871.17	0.63 5	8.03 12	0.63 5
(559.17+x)	2240.83	0.083 11	8.43 21	0.083 11	(943.98+x)	1856.02	0.50 6	8.14 12	0.50 6
(591.06+x)	2208.94	0.20 8	8.1 <i>3</i>	0.20 8	(1312.39+x)	1487.61	2.1 4	8.60 17	2.1 4
(592.83+x)	2207.17	0.31 8	7.91 22	0.31 8	(1357.17+x)	1442.83	< 0.42	>8.6	< 0.42
(615.88+x)	2184.12	2.59 22	7.03 18	2.59 22	(1426.09+x)	1373.91	29 <i>3</i>	6.76 8	29 <i>3</i>
(626.7+x)	2173.3	0.042 7	8.83 19	0.042 7	(1468.76+x)	1331.24	0.21 14	8.9 <i>3</i>	0.21 14
(652.02+x)	2147.98	0.250 20	8.10 17	0.250 20	(1510.76+x)	1289.24	37 4	6.70 8	37 4
(683.6+x)	2116.4	0.80 11	7.64 17	0.80 11	(1542.55+x)	1257.45	0.93 17	8.32 10	0.93 17
(690.20+x)	2109.80	0.35 9	8.00 19	0.35 9	(1578.51+x)	1221.49	<4	>7.7	<4
(742.53+x)	2057.47	2.01 15	7.31 15	2.01 15	(2699.89+x)	100.11	15 5	7.63 15	16 5

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{182}_{74}W_{108}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{182}_{74}W_{108}$

¹⁸⁶Os α decay 1975Vi01

Parent: ¹⁸⁶Os: E=0.0; $J\pi$ =0+; $T_{1/2}$ =2.0×10¹⁵ y 11; Q=2823.1 12; % α =100

 $T_{1/2}(^{186}Os)=2.0\times10^{15}$ y 11, measured by 1975Vi01, is adopted in 2003Ba44 and is recommended by 1990Ho28. This half-life is used in calculations here. % α =100. ¹⁸⁶Os is β stable.

 $Q(\alpha)(^{186}Os)=2823.1$ 12 is recommended by 2003Au03.

$F(level) I^{\pi}$	
L(level) 3	
0.0 0+	

Eα	E(level)	Ια	HF	Comments
2761.3	0.0		1.0	Energy: calculated from $Q(\alpha)(^{186}Os)=2822.0$ 17. $E\alpha \approx 2760$ was measured by 1975Vi01. $I\alpha$: only one α group has been observed. An upper limit of 5% is calculated for an unobserved 2663.4-keV α to the 2+ state at 100.1060 keV by requiring its hindrance factor to be greater than 1. $I\alpha(2761.3\alpha)=97.5\%$ 25 ($I\alpha>95\%$) is used in computations.

[†] For absolute intensity per 100 decays, multiply by 1.0.

[‡] Calculations requiring HF(2761 α)=1.0 yield r₀(¹⁸²W)=1.49 3.

176 Yb(9 Be,3n γ) 1994Re03

1994Re03: E=40 MeV. Also 176 Yb(13 C, $\alpha 3n\gamma$) E=65 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(t)$.

182W Levels

Nuclear Level Sequences

- $K\pi = 0+$ band. А
- $K\pi = 10+$ band. Configuration= $v9/2[624] \otimes v11/2[615])$ from $i_{13/2}$ neutron multiplet. (g_K-g_R)=0.34 4. В
- $K\pi = (16+).$ 4-quasiparticle band. Configuration = $(v9/2[624]v11/2[615]])_{10+} \otimes (\pi7/2[404]\pi5/2[402])_{6+}.$ С
- $(g_K g_R) = 0.21$ *19*. $K\pi = (17 -)$. 4-quasiparticle band. Configuration= $(v9/2[624]v11/2[615]])_{10+} \otimes (\pi9/2[514]\pi5/2[402])_{7-}$. $(g_K g_R) = 0.30$ 7 or 0.18 7. D

Seq.	E(level)	$J^{\pi\ddagger}$	$T_{1/2}^{\dagger}$	Comments
A	0.0	0+		
А	100.3 2	2+		
А	329.2 4	4+		
А	680.2 6	6+		
А	1143.8 7	8+		
А	1711.0 7	10 +		
В	2229.7 8	10 +		
А	2370.8 8	12 +		
В	2491.6 8	11 +		
В	2774.4 9	12 +		
В	3076.9 9	13+		
А	3110.4 10	14 +		
В	3396.8 9	14 +		
В	3734.3 10	15 +		
	3753.1 9	(15+)	54 ns 10	E(level): bandhead of configuration= $(v9/2[624]v7/2[503])_{8-} \otimes (\pi9/2[514]\pi5/2[402])_{7-}$. Other possible configuration= $(\pi9/2[514]\pi1/2[541])_{5+} \otimes (v9/2[624]v11/2[615]])_{10+}$ is less likely. T _{1/2} : 1994Re03 also quote 57.5 ns 14 from centroid-shift method but they adopt 54 ns 10 from $\gamma\gamma$ (t).

¹⁸²W Levels (continued)

E(level)	$J^{\pi\ddagger}$	${T_{1/2}}^\dagger$	Comments
3891.6 10	(16+)	\leq 7 ns	
3907.3 11	16+		
4038.2 11	(17-)	17 ns 7	$T_{1/2}$: 1994Re03 also quote 10 ns 5 from centroid-shift method but they adopt 17 ns 7 from
4216.0 11	(17+)		$\gamma\gamma(t)$.
4418.9 <i>12</i>	(18-)		
4567.6 11	(18+)		
4745.2 15	(18+)		
4777.2 13	(18)		E(level): possible configuration= $(v9/2[624]v11/2[615]])_{10+} \otimes (\pi 9/2[514]\pi 7/2[404])_{8-}$.
4817.9 <i>12</i>	(19-)		
5236.6 13	(20-)		
	E(level) 3891.6 10 3907.3 11 4038.2 11 4216.0 11 4418.9 12 4567.6 11 4745.2 15 4777.2 13 4817.9 12 5236.6 13	$\begin{array}{c} {\rm E(level)} & {\rm J}^{\pi \ddagger} \\ {\rm \overline{3891.6}\ 10} & {\rm \overline{(16+)}} \\ {\rm \overline{3907.3}\ 11} & {\rm 16+} \\ {\rm 4038.2\ 11} & {\rm (17-)} \\ {\rm 4216.0\ 11} & {\rm (17+)} \\ {\rm 4418.9\ 12} & {\rm (18-)} \\ {\rm 457.6\ 11} & {\rm (18+)} \\ {\rm 4745.2\ 15} & {\rm (18+)} \\ {\rm 4777.2\ 13} & {\rm (18)} \\ {\rm 4817.9\ 12} & {\rm (19-)} \\ {\rm 5236.6\ 13} & {\rm (20-)} \\ \end{array}$	$\begin{array}{c cccc} \frac{\mathrm{E}(\mathrm{level})}{3891.6 \ l0} & \mathrm{J}^{\pi \ddagger} & \frac{\mathrm{T}_{1/2}^{\dagger}}{(16+)} & \underline{\leq} 7 \ \mathrm{ns} \\ 3907.3 \ l1 & 16+ \\ 4038.2 \ l1 & (17-) & 17 \ \mathrm{ns} \ 7 \\ \hline 4216.0 \ l1 & (17+) \\ 4418.9 \ l2 & (18-) \\ 4567.6 \ l1 & (18+) \\ 4745.2 \ l5 & (18+) \\ 4777.2 \ l3 & (18) \\ 4817.9 \ l2 & (19-) \\ 5236.6 \ l3 & (20-) \\ \hline \end{array}$

[†] $\gamma\gamma$ (t) (1994Re03). [‡] As proposed by 1994Re03. The assignments in Adopted Levels are the same except that some are placed in parentheses when strong arguments are lacking.

							γ ⁽¹⁸² W)	
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	Eγ	$\mathrm{I}_{\gamma}^{\dagger}$	Mult.	α	Comments
100.3	2+	0.0	0+	100.3.2	28.7.10			
329.2	$\frac{2}{4+}$	100.3	2+	228.9.3	44.5.25			
680.2	6+	329.2	4+	351.0 4	42.3			
1143.8	8+	680.2	6+	463.6 <i>3</i>	32.8 25			
1711.0	10 +	1143.8	8+	567.2 <i>3</i>	18.3 20			
2229.7	10 +	1711.0	10 +	518.5 5	11.7 15			
		1143.8	8+	1086.2 8	8.1 8			
2370.8	12 +	1711.0	10 +	659.8 <i>4</i>	4.2 5			
2491.6	11 +	2229.7	10 +	261.9 2	11.0 12			
2774.4	12 +	2491.6	11 +	282.7 2	6.2 6			$(g_K - g_R)/Q_0 = 0.048 5.$
		2229.7	10 +	545.3 5	1.7 3			
3076.9	13+	2774.4	12 +	302.4 <i>3</i>	3.7 5			$(g_K - g_R)/Q_0 = 0.045 6.$
		2491.6	11 +	585.3 5	2.3 5			
3110.4	14 +	2370.8	12 +	739.6 5	1.9 4			
3396.8	14 +	3076.9	13+	319.9 4	2.4 5			$(g_K - g_R)/Q_0 = 0.051 \ 9.$
		2774.4	12 +	622.5 5	2.0 4			
3734.3	15 +	3396.8	14 +	337.7 5	0.37 15			$(g_K - g_R)/Q_0 = 0.034 \ 12.$
		3076.9	13+	657.2 6	0.74 20			
3753.1	(15+)	3734.3	15+	19				E_{γ} : from (657 γ)(138 γ ,147 γ)(t) the existence of a 19-keV transition with \approx 10% branch is expected.
		3396.8	14 +	356.3 4	3.0 5			ľ
		3076.9	13+	676.1 5	1.7 4			
3891.6	(16+)	3753.1	(15+)	138.5 4	1.30 20	(M1)	1.93	Mult.: $\alpha(\exp)=1.8$ 6 (1994Re03) from intensity balance at 3892 level.
3907.3	16+	3110.4	14 +	796.9 6	1.13 25			
4038.2	(17-)	3891.6	(16+)	146.6 4	2.2 4	(E1)	0.140	Mult.: $\alpha(\exp) < 0.27$ (1994Re03) from intensity balance at 4038 level, 0.45 35 from prompt intensities given here.
4216.0	(17+)	3891.6	(16+)	324.4 5	0.80 20			
4418.9	(18-)	4038.2	(17-)	380.8 5	1.1 3			
4567.6	(18+)	4216.0	(17+)	351.6 5	0.62 20			$(g_K - g_R)/Q_0 = 0.030 \ 13.$
		3891.6	(16+)	676.1 7	0.15 5			
4745.2	(18+)	3907.3	16+	837.9 9	0.25 7			
4777.2	(18)	4038.2	(17-)	739.0 7	0.50 20			
4817.9	(19-)	4418.9	(18-)	398.9 <i>5</i>	1.2 3			$(g_K-g_R)/Q_0=0.043$ 10.
		4038.2	(17-)	779.7 7	0.20 7			
5236.6	(20-)	4817.9	(19-)	418.5 6	0.35 15			$(g_K - g_R)/Q_0 = 0.025 \ 10.$
		4418.9	(18-)	818.0 9	0.24 7			

[†] 1994Re03 list I(γ +ce)'s also based on assumed multipolarities.

176 Yb(13 C, α 3n γ) 1995Sh27

1995Sh27: E= 65 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO), (particle) γ coin using 4π Si detector array for particle detection and NORDBALL array for γ ray detection.

Other: 1994Re03: E=65 MeV. See 176 Yb(9 Be, $3n\gamma$) dataset where 176 Yb(13 C, $\alpha 3n\gamma$) reaction May have been used for some of the measurements.

The two g_K values in each case refer to positive and negative signs of mixing ratio of $\Delta J=1$, M1+E2 in-band transition. The g_K values were deduced from $(g_K-g_R)/Q_0$ using $g_R=0.25$ and $Q_0=7.0$.

Nuclear Level Sequences

- K π =0+, g.s. band. Backbending at $\hbar \omega \approx 0.38$ MeV. А
- $K\pi=2$ -, octupole band. В
- С $\pi 5/2[402] \otimes \pi 7/2[404]$, K $\pi = 6 + g_K(\exp) = +1.11$ 5.
- D $v9/2[624] \otimes v11/2[615]], K\pi = 10 + g_K(exp) = -0.15 2.$
- Е $v9/2[624] \otimes v1/2[510]$, K π =4- g_K(exp)=+0.05 4. F
- $v9/2[624] \otimes v3/2[512], K\pi=6-g_K(exp)=+0.01 I.$ $\pi 9/2[514] \otimes \pi 5/2[402]$, K $\pi = 7$ - g_K(exp)=+1.17 7. G
- $v9/2[624] \otimes v7/2[503]$, $K\pi$ =8- $g_K(exp)$ =-0.21 5. Η
- I
- *ν*9/2[624]⊗*ν*1/2[510], K*π*=5-.

 $v_{(8-)}^2 \otimes \pi^2_{(7-)}, K\pi = 15+, v^2(8-): v9/2[624] \otimes v7/2[503]; \pi^2(7-): \pi 9/2[514] \otimes \pi 5/2[402]. g_K(exp) = +0.52$ 4. J

- $v_{(8-)}^2 \otimes \pi^2_{(8-)}, K\pi = 16+. v^2(8-): v9/2[624] \otimes v7/2[503]; \pi^2(8-): \pi9/2[514] \otimes \pi7/2[404]. g_K(exp) = +0.36 \ 6.$ Κ
- L
- $v_{(10+)}^{20} \otimes \pi^{2}_{(7-)}, \ K\pi = 17-, \ v^{2}(10+): v9/2[624] \otimes v11/2[615]]; \ \pi^{2}(7-): \pi 9/2[514] \otimes \pi 5/2[402]. \ g_{K}(\exp) = +0.46 \ 3. \\ v_{(10+)}^{20} \otimes \pi^{2}_{(8-)}, \ K\pi = 18-, \ v^{2}(10+): v9/2[624] \otimes v11/2[615]]; \ \pi^{2}(8-): \pi 9/2[514] \otimes \pi 7/2[404]. \ g_{K}(\exp) \approx +0.32.$ М
- Ν K = (12) band.

Seq.	$E(level)^{\dagger}$	$J^{\pi \ddagger}$	$T_{1/2}$	Comments
A	0.0	0+		
А	100.20 10	2+		
А	329.29 14	4+		
А	680.13 16	6+		
А	1144.03 19	8+		
В	1289.31 14	2-		
В	1373.89 16	3-		
В	1487.45 16	4-		
Е	1553.00 16	4-		
В	1621.14 16	5-		
Е	1660.18 16	5-		
А	1711.53 22	10 +		
С	1756.56 16	6+		
Е	1768.71 <i>16</i>	6-		$g_K = +0.53 \ 2 \text{ or } -0.03 \ 2.$
Ι	1809.09 19	5-		
В	1810.55 17	6-		
F	1829.17 <i>16</i>	6-		
E	1916.77 <i>16</i>	7-		$g_K = +0.41 \ I \text{ or } +0.09 \ I.$
F	1959.94 <i>17</i>	7-		
Ι	1960.0 <i>3</i>	6-		
С	1970.72 <i>19</i>	7+		
G	1978.16 <i>19</i>	(7-)		
В	1993.44 <i>19</i>	7-		
E	2087.10 17	8-		$g_K = +0.44 \ I \text{ or } +0.06 \ I.$
F	2113.71 17	8-		$g_K = +0.49 \ 2 \text{ or } +0.01 \ 2.$
Н	2119.86 17	8-		
Ι	2130.6 11	7-		
G	2204.16 21	(8-)		
С	2212.12 21	8+		$g_K = +1.06 \ 6 \ \text{or} \ -0.56 \ 6.$
В	2225.05 20	8-		
D	2230.3 7	10 +		

Seq.	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
E	2273 51 18	9_		$g_{\nu} = +0.47 l \text{ or } +0.03 l$
F	2301.22 17	9-		$g_K \approx +0.39 \text{ or } \approx +0.11.$
I	2323.8 11	(8-)		SK COLO COLO
Н	2327.23 18	<u>9</u> -		
А	2372.13 24	12+		
В	2445.74 21	9-		
G	2455.26 23	(9-)		$g_K > +1.25$ or < -0.75 .
С	2479.37 22	9+		$g_K = +1.09 5 \text{ or } -0.59 5.$
E	2486.43 18	10-		$g_K = +0.58 \ 3 \text{ or } -0.08 \ 3.$
D	2492.4 7	11 +		
F	2507.09 18	10-		$g_K = +0.50 \ 3 \text{ or } 0.00 \ 3.$
Н	2563.32 20	10-		$g_K \approx +0.91$ or ≈ -0.41 .
Е	2710.42 19	11-		$g_K = +0.65 \ 3 \text{ or } -0.15 \ 3.$
G	2730.36 25	(10-)		$g_K > +1.31$ or < -0.81 .
В	2738.86 22	10-		
F	2741.31 20	11-		
C	2768.79 24	10+		$g_K = +1.1/3$ or $-0.6/3$.
D	21/5.3 /	12+		$g_K = +0.674$ or -0.174 .
H E	2823.30 22	11-		$g_K = -0.673$ or -0.173 .
E D	2972.05 20	12-		$g_K = +0.02 \ 4 \ \text{or} \ -0.12 \ 4.$
D E	2980.44 24	11-		
G	3027 5 3	(11_{-})		$g_{x} = \pm 1.25.26 \text{ or } 0.75.26$
D	3077.9.7	(11-) 13+		$g_K = +1.25 \ 20 \ 01 \ -0.75 \ 20.$
Н	3106 10 24	12-		$g_{k} = +0.05 + 01 + 0.15 + 1.05$ $g_{\nu} = +0.77 + 3 \text{ or } -0.27 + 3$
A	3112.6.3	14+		5x-10.11 5 01 0.21 5.
E	3224.02 21	13-		
F	3269.21 22	13-		
В	3319.5 5	(12-)		
G	3342.6 <i>3</i>	(12-)		$g_K = +1.11 \ 23 \text{ or } -0.61 \ 23.$
D	3398.0 7	14+		$g_K = +0.67$ 7 or -0.17 7.
Н	3409.9 <i>3</i>	13-		$g_K = +0.73 \ 4 \text{ or } -0.23 \ 4.$
Ν	3415.6 7	(12)		
F	3517.63 22	(14-)		
Е	3549.53 22	14-		
В	3567.6 4	(13-)		
N	3676.8 7	(13)		
H	3733.2 3	14-		$g_K = +0.673$ or -0.173 .
D	3736.17	15+	27 2	$g_K = +0.64$ 5 or -0.14 5.
J	3/54.5 /	15+	3/ ns 2	$I_{1/2}$: from time differences between the transitions above and below the
				isomer: 139 γ and 324 γ above the isomer and 262 γ , 283 γ and 356 γ
Е	3807.12 24	15-		below the isomer.
F	3879.71 24	15-		
Κ	3893.3 7	16+		
А	3909.8 <i>3</i>	16+		
Ν	3965.9 7	(14)		$g_K = +0.51 \ 19 \text{ or } -0.01 \ 19.$
L	4040.2 7	17-	20 ns 1	$T_{1/2}$: from time differences between the transitions above and below the
				isomer: 381γ , 399γ and 740γ above the isomer and 147γ below the
				isomer.
H	4074.1 4	15-		$g_K = +0.72$ o or -0.22 o.
D	40/8.5 /	10+		a = 10.65.5 an 0.15.5
D E	4081.2 /	10+		$g_{K} = +0.03 \ J \ \text{Or} \ -0.13 \ J.$
Г Р	4110.3 3	(10-)		
D	4190.9 J	(13-)		
N	4279.9.7	(15)		$g_{\nu} = +0.61.25 \text{ or } -0.11.25$
K	4292.7 7	17+		$5\Lambda^{-10.01}$ 20 01 0.11 20.
L	4421.2 7	18-		

¹⁸²W Levels (continued)

Seq.	$E(level)^{\dagger}$	$J^{\pi \ddagger}$	$T_{1/2}$	Comments
J	4430.1 7	17+		$g_K = +0.54 4$ or $-0.04 4$.
D	4453.4 12	(17+)		
Е	4455.7 <i>3</i>	17-		
F	4570.5 4	(17-)		
А	4690.6 <i>3</i>	18 +		
Κ	4711.5 7	18 +		$g_K = +0.36 6 \text{ or } +0.14 6.$
F	4779.2 4	(18-)		
Μ	4780.0 8	(18)		
J	4804.6 8	18 +		$g_K = +0.46 \ 6 \ \text{or} \ +0.04 \ 6.$
L	4819.8 7	19-		$g_K = +0.49$ 7 or $+0.01$ 7.
D	4847.1 9	(18+)		
Е	4954.3 11	(18-)		
Κ	5148.2 8	19 +		$g_K \approx +0.47$ or $\approx +0.03$.
Е	5170.3 5	(19-)		
Μ	5191.5 8	(19)		
J	5199.3 8	(19+)		
D	5225.5 16	(19+)		
L	5235.5 8	20-		$g_K = +0.43 6 \text{ or } +0.07 6.$
F	5338.2 11	(19-)		
А	5428.3 4	(20+)		
Μ	5618.2 8	(20)		$g_K \approx +0.32$ or $\approx +0.18$.
L	5666.6 10	21-		$g_K \approx +0.49$ or $\approx +0.01$.

¹⁸²W Levels (continued)

[†] From least-squares fit to $E\gamma'$ s. The data for β and γ bands are not reported by 1995Sh27 even though these bands and associated transitions have been seen by these authors. Normalized $\chi^2=0.96$.

[‡] As proposed by 1995Sh27 based on $\gamma\gamma(\theta)$ data and band assignments. The assignments in Adopted Levels are the same except that many are placed in parentheses when strong arguments are lacking.

 $\frac{\gamma(^{182}W)}{(g_K-g_R)/Q_0}$ values have been deduced by 1995Sh27 from $\Delta J=2/\Delta J=1$ branching ratios, assuming rotational model. The values of (M1+E2) mixing ratios for $\Delta J=1$ transitions were also deduced by these authors but not listed in the paper.

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	E_{γ}	I_{γ}	Mult.^\dagger	Comments
Unplaced				237.1 1	1.8 3	(D+O)	DCO= 0.8 3, $\Delta J=1$ gated.
1				261.9 <i>1</i>	1.4 2	(D+Q)	DCO= 1.0 4, $\Delta J=1$ gated.
				285.6 1	1.2 2	(D+Q)	DCO= 1.0 4, $\Delta J=1$ gated.
				307.4 1	0.7 1	(D+Q)	DCO= 1.0 5, $\Delta J=1$ gated.
				327.5 1	0.4 1	(D+Q)	DCO= 1.1 6, $\Delta J=1$ gated.
				1148.0 <i>1</i>	2.6 5	(D+Q)	DCO= 1.0 2, $\Delta J=1$ gated.
100.20	2+	0.0	0 +	100.2 1	33 6	Q	DCO= 1.0 <i>1</i> .
329.29	4+	100.20	2+	229.1 <i>1</i>	100	Q	DCO= 1.0 <i>1</i> .
680.13	6+	329.29	4+	350.8 <i>1</i>	103 22	Q	DCO= 1.0 <i>1</i> .
1144.03	8+	680.13	6+	463.9 <i>1</i>	89 <i>21</i>	Q	DCO= 1.0 <i>1</i> .
1289.31	2-	100.20	2+	1189.1 <i>1</i>	3.1 5		
1373.89	3-	1289.31	2-	84.8 <i>1</i>	1.7 <i>3</i>	D+Q	$DCO= 0.5 \ 3.$
		100.20	2+	1273.7 6	<6		
1487.45	4-	1373.89	3-	113.7 <i>1</i>	3.3 6	D+Q	$DCO= 0.8 \ 3.$
		1289.31	2-	198.2 <i>1</i>	2.4 4	Q	DCO= 1.3 5.
1553.00	4-	1373.89	3-	179.2 <i>1</i>	0.9 1		
		1289.31	2-	263.4 1	1.2 2		
1621.14	5-	1487.45	4-	133.8 <i>1</i>	2.7 5		
		1373.89	3-	247.3 1	5.3 9	Q	DCO= 0.9 <i>3</i> .
1660.18	5-	1553.00	4-	107.2 <i>1</i>	0.6 1		
		1487.45	4-	172.7 <i>1</i>	1.4 2		

Flevel	īπ	Flevel	īπ	E.	L	Mult [†]	Comments
L _i	J _i	$\frac{\mathbf{L}_f}{\mathbf{L}_f}$	$\frac{\mathbf{J}_f}{\mathbf{J}_f}$	<u>Γγ</u>	1γ	Wiuit.	Comments
1711 50	10	1373.89	3-	286.2 1	3.3 5	0	
1711.53	10+	1144.03	8+	567.5 1	45 10	Q	DCO= 1.0 I.
1/56.56	6+	680.13	6+	10/6.4 1	3.0 4		
1760 71	6	329.29	4+	1427.3 1	2.3 3		
1/68./1	0-	1660.18	5-	108.5 1	0.5 1	D+Q	DCO = 0.5 3.
							$(g_K - g_R)/Q_0 = 0.039 \ 5 \ 101$
		1621 14	5-	14781	112		$\Gamma\gamma(213.4\gamma)/\Gamma\gamma(108.3\gamma) = 0.87$ 13.
		1553.00	<u> </u>	215.4.3	051		
		1487.45	4-	281 3 1	629		
1809.09	5-	1621.14	5-	187.9 6	< 0.1		
		1553.00	4-	256.1 1	2.4 4		
1810.55	6-	1621.14	5-	189.4 <i>1</i>	0.8 1		
		1487.45	4-	323.2 1	3.5 5	Q	DCO= 1.0 4.
1829.17	6-	1660.18	5-	169.0 <i>1</i>	2.4 4		
		1553.00	4-	276.0 1	1.5 2		
1916.77	7-	1810.55	6-	106.3 1	0.4 1		
		1768.71	6-	148.2 <i>1</i>	0.5 1		$(g_K-g_R)/Q_0=0.023 \ 2 \text{ for}$
							$I\gamma(256.5\gamma)/I\gamma(148.2\gamma) = 2.51\ 25.$
		1660.18	5-	256.5 1	1.4 2	Q	DCO= 1.1 <i>3</i> .
	_	1621.14	5-	295.6 1	5.0 7		
1959.94	7-	1829.17	6-	130.8 1	2.9 5		
		1/68./1	6-	191.3 1	2.8 5		
		1660.18	5-	299.8 2°	$0.7 T^{c}$		
1060.0	6	1621.14	5- 6	338./2	1.5 2		
1900.0	0-	1610.33	0- 5	149.0 11	0.2 I		
1070 72	7.	1756 56	5-	299.8 2	$< 0.1^{\circ}$		DCO = 1.1.2 AI = 1 geted
1970.72	(7_{-})	1820.17	6-	1/18 0 <i>/</i>	2.04	D+Q	$DCO= 1.1 2$, $\Delta J=1$ galed.
1770.10	(7-)	1756 56	0- 6⊥	221.6.1	142		
1993 44	7-	1810 55	6-	182.8.5	< 0.2		
1775.44	,	1621.14	5-	372.3.1	183	0	DCO = 0.9.3
2087.10	8-	1916.77	- 7-	170.4 1	1.1 2	×	$(g_{K}-g_{R})/O_{0}=0.027$ / for
							$I_{\gamma}(318.4\gamma)/I_{\gamma}(170.4\gamma)=4.9$ 3.
		1768.71	6-	318.4 <i>1</i>	5.4 8	Q	DCO= 1.0 2.
2113.71	8-	1959.94	7-	153.5 5	1.2 2		$(g_K-g_R)/Q_0=0.034 \ 3 \text{ for}$
							$I\gamma(285.1\gamma)/I\gamma(153.5\gamma)=0.52$ 7.
		1916.77	7-	197.4 2	0.3 1		
		1829.17	6-	285.1 10	0.6 1		
	-	1768.71	6-	345.0 1	1.3 2		
2119.86	8-	1959.94	7-	160.0 1	1.73		
2120 6	7	1829.17	6-	290.5 <i>I</i>	0.6 1		
2130.6	/-	1/68./1	6-	361.9 10	< 0.4	(\mathbf{D}, \mathbf{O})	DCO 101 AL 1 and 1
2204.10	(8-)	1978.10	(/-)	220.0 I	3.38	(D+Q)	$DCO= 1.0 I$, $\Delta J=1$ gated.
2212.12	8+	1970.72	/+	241.4 1	2.0 5	D+Q	$DCO= 1.1.4, \Delta J=1$ gated.
							$(g_K - g_R)/Q_0 = 0.110 \ 9 \ 101$ $I_{0}(454 \ 9_{0})/I_{0}(241 \ 4_{0}) = 0.14 \ 2$
		1756 56	6+	454 9 <i>4</i>	0.3 1		1/(+J+.)/)/1/(2+1.+/)=0.14 2.
2225.05	8-	1810 55	6-	414 5 1	1.7 3	0	DCO = 1.3.5
2230.3	10+	1711.53	10+	519 ^a		*	
		1144.03	8+	1086 ^a			
2273.51	9-	2087.10	8-	186.5 1	0.9 1		$(g_K-g_R)/Q_0=0.032$ 1 for
	-		-				$I\gamma(356.7\gamma)/I\gamma(186.5\gamma)=6.1$ 4.
		1916.77	7-	356.7 1	5.4 8	Q	DCO= 1.2 2.
2301.22	9-	2119.86	8-	181.3 10	0.2 1		
		2113.71	8-	187.6 <i>3</i>	0.4 1		$(g_K - g_R)/Q_0 \approx 0.020$ for
			-				<i>Ι</i> γ(341.3γ)/ <i>Ι</i> γ(187.6γ)≈2.25.
		2087.10	8-	214.2 10	< 0.3		
		1959.94	7-	341.3 <i>1</i>	1.2 5		I_{γ} : 1995Sh27 list 0.9 +8-2.

 γ ⁽¹⁸²W) (continued)</sup>

γ ⁽¹⁸² W) (continued)										
\mathbf{E}_{i}^{level}	\mathbf{J}_i^π	\mathbf{E}_{f}^{level}	J_f^π	Eγ	I_{γ}	Mult. [†]	Comments			
2323.8 2327.23	(8-) 9-	1916.77 1916.77 2119.86	7- 7- 8-	384.4 <i>1</i> 407.0 <i>10</i> 207.2 <i>1</i>	1.1 2 <0.2 1.3 2					
2372.13	12+	2113.71 1711.53	8- 10+	213.6 <i>1</i> 660.6 <i>1</i>	1.9 <i>3</i> 10.9 <i>16</i>	Q	DCO= 0.9 1.			
2445.74	9-	1993.44	7-	452.3 1	1.9 <i>3</i>	Q	DCO= 1.0 <i>3</i> .			
2455.26	(9-)	2204.16	(8-)	251.1 <i>I</i>	4.2 6	(D+Q)	DCO= 0.9 2, $\Delta J=1$ gated. (g_K-g_R)/Q ₀ >0.14 for I γ (477.1 γ)/I γ (251.1 γ)<0.07.			
2479.37	9+	1978.16 2212.12	(7-) 8+	477.1 <i>10</i> 267.2 <i>1</i>	<0.3 1.7 <i>3</i>	D+Q	DCO= 0.9 3, Δ J=1 gated. (g_K - g_R)/Q ₀ =0.120 7 for			
		1970.72	7+	508.8 2	0.5 1		$\Gamma\gamma(308.8\gamma)/\Gamma\gamma(207.2\gamma)=0.29$ 5.			
2486.43	10-	2273.51	9-	213.0 1	0.9 1		$(g_K-g_R)/Q_0=0.047 \ 4 \text{ for}$ $I\gamma(399.3\gamma)/I\gamma(213.0\gamma)=4.1 \ 5.$			
		2087.10	8-	399.3 1	3.6 7	Q	DCO= 1.0 2.			
2492.4	11+	2230.3	10+	262.1 <i>I</i>	193	D+Q	DCO= 1.0 I , ΔJ =1 gated.			
2507.09	10-	2301.22	9-	205.8 2	0.3 I		$(g_K-g_R)/Q_0=0.035$ 4 for I $\gamma(393.4\gamma)/I\gamma(205.8\gamma)=2.1$ 4.			
		2275.51	9- 8-	233.8 10	< 0.2		L: 1005Sb27 list 0.8 ± 10.2			
		2117.00	8-	393.4.2	0.61		1γ . 17755127 list 0.6 $\pm 10^{-2}$.			
		2087 10	8-	420.0 1	102					
2563.32	10-	2327.23	9-	236.0 1	2.5 4		$(g_K-g_R)/Q_0=0.094$ for I $\gamma(443.8\gamma)/I\gamma(236.0\gamma)=0.09.$			
		2119.86	8-	443.8 2	< 0.2					
2710.42	11-	2486.43	10-	224.0 1	0.8 1	0	$(g_K-g_R)/Q_0=0.057 \ 4 \ \text{for}$ I $\gamma(436.9\gamma)/I\gamma(224.0\gamma)=4.3 \ 6.$			
0720.26	(10)	22/3.51	9-	436.9 1	3.4 0	Q	DCO = 0.9 2.			
2730.36	(10-)	2455.26	(9-)	2/5.1 1	2.9 4	(D+Q)	DCO= 1.0 2, $\Delta J=1$ gated. $(g_K-g_R)/Q_0 > 0.15$ for $L_2(526.22)/L_2(275.12) < 0.14$			
		2204.16	(8-)	526.2 10	< 0.4		1/(520.27)/1/(275.17)<0.14.			
2738.86	10-	2225.05	8-	513.8 <i>I</i>	1.3 2	0	DCO= 1.0 <i>3</i> .			
2741.31	11-	2301.22	9-	440.1 <i>1</i>	1.7 3	ò	$DCO= 0.8 \ 3.$			
		2273.51	9-	467.7 5	0.6 1					
2768.79	10+	2479.37	9+	289.4 1	1.1 2	D+Q	DCO= 1.0 3, $\Delta J=1$ gated. (g_K-g_R)/ $Q_0=0.131$ 7 for I γ (557.1 γ)/I γ (289.4 γ)=0.39 4.			
		2212.12	8+	557.1 5	0.4 1					
2775.3	12+	2492.4	11+	282.8 1 ^c	14.0 <i>24^c</i>	D+Q	DCO= 1.1 <i>I</i> , Δ J=1 gated. (g _K -g _R)/Q ₀ =0.061 5 for			
		2230.3	10 +	545 1 2	265	0	DCO = 1.8.5 AI = 1 gated			
2823.30	11-	2563.32	10-	260.0 1	1.7 2	Q	$(g_K-g_R)/Q_0=0.060 \ 4 \ \text{for}$ $I\gamma(496.0\gamma)/I\gamma(260.0\gamma)=0.48 \ 5.$			
		2327.23	9-	496.0 5	0.8 1					
2972.03	12-	2710.42	11-	261.6 2	0.4 1		$(g_K-g_R)/Q_0=0.053 5$ for I $\gamma(485.6\gamma)/I\gamma(261.6\gamma)=5.2 9$.			
		2486.43	10-	485.6 1	2.0 4	Q	DCO= 1.1 3.			
2980.44	11-	2445.74	9-	534.7 <i>1</i>	1.4 2	Q	DCO= 1.2 3.			
2980.92	12-	2507.09	10-	473.8 <i>1</i>	1.6 3					
		2486.43	10-	494.6 2	0.6 1					
3027.5	(11-)	2730.36	(10-)	297.1 <i>1</i>	1.7 2	(D+Q)	DCO= 1.0 4, $\Delta J=1$ gated. (g_K-g_R)/Q ₀ =0.14 4 for $I_{2}(572, 2\gamma)/I_{2}(297, 1\gamma)=0.24$ 11			
		2455.26	(9-)	572.2 20	0.4 2		-1(
3077.9	13+	2775.3	12+	302.5 1	9.1 <i>18</i>	D+Q	DCO= 0.9 1, $\Delta J=1$ gated.			

γ ⁽¹⁸² W) (continued)										
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	J_f^π	Eγ	I_{γ}	Mult. [†]	Comments			
3106.10	12-	2492.4 2823.30	11+ 11-	585.6 <i>1</i> 282.8 <i>1</i> ^c	4.2 9 1.4 2 ^c	Q	$(g_K-g_R)/Q_0=0.054\ 6\ for$ I $\gamma(585.6\gamma)/I\gamma(302.5\gamma)=0.47\ 9.$ DCO= 1.8 4, Δ J=1 gated. $(g_K-g_R)/Q_0=0.074\ 4\ for$			
3112.6	14+	2563.32 2372.13	10- 12+	542.5 <i>5</i> 740.5 <i>1</i>	0.7 <i>1</i> 4.3 <i>6</i>	Q	$I\gamma(542.5\gamma)/I\gamma(282.8\gamma)=0.53$ 6. DCO= 0.9 1.			
3224.02 3269.21 3319 5	13- 13- (12-)	2710.42 2741.31 2738.86	11- 11- 10-	513.6 <i>1</i> 527.9 <i>1</i> 580 6 4	2.6 5 1.3 2 0 2 1	Q Q	DCO= 1.1 2. DCO= 0.8 3.			
3342.6	(12-)	3027.5	(11-)	315.1 1	0.7 1	(D+Q)	DCO= 1.0 5, Δ J=1 gated. (g _K -g _R)/Q ₀ =0.12 3 for I γ (612.2 γ)/I γ (315.1 γ)=0.44 22.			
3398.0	14+	2730.36 3077.9	(10-) 13+	612.6 <i>10</i> 320.0 <i>1</i>	0.3 2 6.7 <i>1</i> 7	D+Q	DCO= 1.0 2, $\Delta J=1$ gated. (g_K-g_R)/Q ₀ =0.060 10 for			
3409.9	13-	2775.3 3106.10	12+ 12-	622.7 <i>1</i> 303.8 <i>1</i>	4.1 <i>11</i> 0.8 <i>1</i>	Q	$1\gamma(622.7\gamma)/1\gamma(320.0\gamma) = 0.61$ 18. DCO= 1.8 4, ΔJ =1 gated. $(g_K-g_R)/Q_0=0.068$ 6 for $1\gamma(586.8\gamma)/1\gamma(303.8\gamma) = 0.88$ 13.			
3415.6 3517.63	(12) (14-)	2823.30 2492.4 2980.92	11- 11+ 12-	586.8 5 923.1 1 536.7 1	0.7 <i>1</i> 1.9 <i>3</i> 1.0 <i>2</i>	D+Q	DCO= 1.2 3, Δ J=1 gated.			
3549.53	14-	2972.03 2980.92 2972.03	12- 12- 12-	568.6 10 577.5 1	$< 0.2 \\ 0.9 2$	0	DCO= 1.0 2.			
3567.6 3676.8	(13-) (13)	2980.44 3415.6 2775.3	11- (12) 12+	587.2 <i>3</i> 261.2 <i>1</i> 901.8 <i>3</i>	0.7 <i>1</i> 1.4 2 0.3 <i>1</i>	(Q)	DCO= 0.8 <i>4</i> .			
3733.2	14-	3409.9	13-	323.3 <i>I</i>	0.5 1		$(g_K-g_R)/Q_0=0.060 \ 4 \text{ for}$ $I\gamma(627.4\gamma)/I\gamma(323.3\gamma)=1.44 \ 19.$			
3736.1	15+	3398.0	12-	338.0 <i>1</i>	1.4 3		$(g_K-g_R)/Q_0=0.055\ 7\ for$ $I\gamma(658.2\gamma)/I\gamma(338.0\gamma)=0.94\ 20.$			
3754.5	15+	3077.9 3398.0 3077.9	13+ 14+ 13+	658.2 <i>1</i> 356.5 <i>1</i> 676.8 2	1.3 3 7.1 25 3.6 <i>13</i>	D+Q Q	DCO= 0.9 2, $\Delta J=1$ gated. DCO= 1.7 6, $\Delta J=1$ gated.			
3807.12 3879.71 3893 3	15- 15- 16+	3224.02 3269.21 3754 5	13- 13- 15+	583.1 <i>1</i> 610.5 <i>1</i> 138.8 <i>1</i>	1.3 2 0.8 <i>1</i> 3.6 6	$\begin{array}{c} Q\\ Q\\ (M1)^{b} \end{array}$	DCO= 1.2 <i>3.</i> DCO= 1.1 <i>6</i> .			
3909.8 3965.9	16+ (14)	3112.6 3676.8	14+ (13)	797.2 <i>1</i> 289.1 <i>1</i>	1.3 2 0.8 4	Q	DCO= 0.9 2. $(g_K-g_R)/Q_0 > 0.032$ for $I\gamma(550.3\gamma)/I\gamma(289.0\gamma) < 0.31.$			
4040.2 4074.1	17- 15-	3415.6 3893.3 3733.2	(12) 16+ 14-	550.3 <i>10</i> 146.9 <i>1</i> 340.9 <i>2</i>	0.2 <i>1</i> 4.4 7 0.3 <i>1</i>	(E1) ^b	$(g_K - g_R)/Q_0 = 0.067 \ 9 \text{ for}$			
4078.5	16+	3409.9 3754.5	13- 15+	664.2 <i>5</i> 324.0 <i>1</i>	0.4 <i>1</i> 2.4 <i>4</i>		$I\gamma(664.2\gamma)/I\gamma(340.9\gamma)=1.5$ 4.			
4081.2	16+	3736.1 3398.0	15+ 14+	345.1 2 683.2 <i>3</i>	0.3 <i>1</i> 0.5 <i>2</i>		$(g_K-g_R)/Q_0=0.057 \ 8 \text{ for}$ $I\gamma(683.2\gamma)/I\gamma(345.1\gamma)=1.2 \ 3.$			
4116.5 4196.9 4210.6	(16-) (15-)	3517.63 3567.6 3549.53	(14-) (13-)	598.9 2 629.3 2 661 1 2	0.5 <i>1</i> 0.3 <i>1</i> 0.7 2	0	DCO=0.9.3			
4279.9	(15)	3965.9	(14)	314.0 <i>I</i>	0.7 2	Y	$(g_K - g_R)/Q_0 > 0.044$ for $I\gamma(603.1\gamma)/I\gamma(314.0\gamma) < 0.43.$			
4292.7	17+	3893.3	16+	399.4 <i>1</i>	2.9 5					

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Eγ	Iγ	Mult. [†]	Comments
4421.2	18-	4040.2	17-	380.9 1	2.4 4		
4430.1	17+	4078.5	16+	351.6 1	1.1 2		$(g_K-g_R)/Q_0=0.042$ 6 for $I_{\gamma}(675,5\gamma)/I_{\gamma}(351,6\gamma)=0.17$ 4
		3754.5	15 +	675.5 11	0.2 1		
4453.4	(17+)	4081.2	16+	371.3 10	< 0.1		
	· · · ·	3736.1	15 +	717.3 10	0.3 1		
4455.7	17-	3807.12	15-	648.6 2	0.6 1	Q	DCO= 1.0 3.
4570.5	(17-)	3879.71	15-	690.8 <i>3</i>	0.3 1	-	
4690.6	18+	3909.8	16+	780.8 <i>1</i>	0.6 2	Q	DCO= 0.9 2.
4711.5	18+	4292.7	17+	418.8 <i>1</i>	1.1 2	-	$(g_K-g_R)/Q_0=0.015 \ 9 \text{ for}$ $I_{\gamma}(818,1\gamma)/I_{\gamma}(418,8\gamma)=0.66 \ 25.$
		3893.3	16+	818.1 6	0.7 3		
4779.2	(18-)	4116.5	(16-)	662.7 2	0.4 <i>I</i>		
4780.0	(18)	4040.2	17-	739.8 2	0.9 2		
4804.6	18+	4430.1	17+	374.5 2	0.4 1		$(g_K-g_R)/Q_0=0.029 \ 9 \text{ for}$ $I\gamma(725.7\gamma)/I\gamma(374.5\gamma)=0.6 \ 3.$
		4078.5	16+	725.7 5	0.2 1		
4819.8	19-	4421.2	18-	398.5 1	1.1 3		$(g_K-g_R)/Q_0=0.034 \ 11 \text{ for}$ $I\gamma(779.9\gamma)/I\gamma(398.5\gamma)=0.24 \ 11.$
		4040.2	17-	779.9 <i>3</i>	0.3 1		
4847.1	(18+)	4081.2	16+	765.9 10	0.3 1		
		3909.8	16+	937.3 10	0.2 1		
4954.3	(18-)	4210.6	16-	743.7 10	0.3 1		
5148.2	19+	4711.5	18+	436.6 9	0.4 1		$(g_K - g_R)/Q_0 \approx 0.032$ for $I\gamma(855.5\gamma)/I\gamma(436.6\gamma)\approx 0.65.$
		4292.7	17 +	855.5 4	< 0.2		
5170.3	(19-)	4455.7	17-	714.6 <i>3</i>	< 0.3		
5191.5	(19)	4780.0	(18)	411.4 2	0.4 1		
5199.3	(19+)	4804.6	18 +	394.7 <i>2</i>	0.3 1		
5225.5	(19+)	4453.4	(17+)	772.1 10	< 0.2		
5235.5	20-	4819.8	19-	415.6 2	0.4 1		$(g_K-g_R)/Q_0=0.025 \ 9 \text{ for}$ $I\gamma(814.8\gamma)/I\gamma(415.6\gamma)=0.7 \ 3.$
		4421.2	18-	814.8 4	0.3 1		
5338.2	(19-)	4570.5	(17-)	767.7 10	< 0.2		
5428.3	(20+)	4690.6	18 +	737.7 2	< 0.3		
5618.2	(20)	5191.5	(19)	426.7 2	< 0.2		$(g_K-g_R)/Q_0 \approx 0.010$ for $I\gamma(838.4\gamma)/I\gamma(426.6\gamma)\approx 0.72.$
		4780.0	(18)	838.4 5	< 0.1		••••••
5666.6	21-	5235.5	20-	431.2 10	< 0.1		$(g_K - g_R)/Q_0 \approx 0.034$ for I $\gamma(846.7\gamma)/I\gamma(431.2\gamma) \approx 0.71.$
		4819.8	19-	846.7 10	< 0.1		

 γ (¹⁸²W) (continued)

[†] From DCO ratios. The assignment D+Q refers to $\Delta J=1$ transition implied by DCO ≈ 0.6 for $\Delta J=2$ gate and ≈ 1 for $\Delta J=1$ gate; the assignment Q refers to $\Delta J=2$ transition implied by DCO ≈ 1 for $\Delta J=2$ gate and ≈ 1.7 for $\Delta J=1$ gate. All $\Delta J=2$ transitions are expected to be E2 rather than M2, and $\Delta J=1$ transitions M1+E2. ^{*a*} From figure 2 of 1995Sh27, not listed in authors' table 1.

^b 1995Sh27 deduce M1 for 139 γ and E1 for 147 γ based on expected equality of total transition intensities of 139 γ and 147 γ . All other possible combinations of multipolarities for these two γ rays give inconsistent ratios. ^c Multiply placed with intensity suitably divided.

¹⁸⁰**Hf**(α ,2n γ) 1977Je02

1977Je02: E=26 MeV. Measured Ey, Iy, yy using two large volume Ge(Li) detectors and a small Ge(Li) detector of better resolution for low-energy γ rays. 1969No05: E=27 MeV. Natural Hf target, measured E γ , I γ , ce, $\alpha\gamma(t)$, lifetime. α total of 7 γ rays reported, five in g.s. band up

to 10+ and two from a 1.4- μ s isomer at 2230 keV.

Other: 1965La02: g.s. band reported up to 10+.

182W Levels

Nuclear Level Sequences

- А $K\pi=0+$, g.s. band.
- K π =2, γ band. В
- K π =0, $\dot{\beta}$ band. С
- D K π =2-, octupole band.
- Е $\pi 5/2[402] \otimes \pi 7/2[404], K\pi = 6+.$
- $v9/2[624] \otimes v11/2[615]], K\pi = 10+.$ F
- *v*9/2[624]⊗*v*1/2[510], K*π*=4-. G
- *v*9/2[624]⊗*v*3/2[512], K*π*=6-. Η
- $\pi 9/2[514] \otimes \pi 5/2[402], K\pi = 7-.$ Ι
- J *ν*9/2[624]⊗*ν*7/2[503], K*π*=8-.
- Κ *ν*9/2[624]⊗*ν*1/2[510], K*π*=5-.

Seq.	E(level)	$\mathrm{J}^{\pi\dagger}$	T _{1/2}	Comments
A	0.0	0+		
А	100.11 10	2+		
А	329.42 12	4+		
А	680.47 14	6+		
А	1144.47 17	8+		
В	1221.50 12	2+		
С	1257.37 17	2+		
D	1289.19 <i>13</i>	2-		
В	1331.19 <i>13</i>	3+		
D	1373.88 12	3-		
В	1442.90 13	4+		
D	1487.55 <i>13</i>	4-		
С	1510.24 15	4+		
G	1553.25 <i>13</i>	4-		
D	1621.34 <i>13</i>	5-		
В	1623.62 17	5+		
G	1660.45 13	5-		
А	1712.13 22	10 +		
Е	1756.83 14	6+		
G	1769.05 13	6-		
Κ	1809.85 16	5-		
D	1810.93 14	6-		
Н	1829.64 13	6-		
G	1917.24 <i>16</i>	7-		
Н	1960.41 <i>13</i>	7-		
Е	1971.23 18	7+		
Ι	1978.52 <i>21</i>	(7-)		
D	1993.84 16	(7-)		
	2087.75 17			
Н	2114.50 15	(8-)		
J	2120.58 16	(8-)		
Κ	2131.4 3	7-		
Ι	2204.72 23	(8-)		
Е	2212.93 20	(8+)		
D	2225.53 17	(8-)		
F	2230.80 22	10+	1.4 μs <i>1</i>	$T_{1/2}$: from 1969No05.
Н	2274.2 3	(9-)	·	·/~

¹⁸²W Levels (continued)

Seq.	E(level)	$\mathrm{J}^{\pi\dagger}$	T _{1/2}	Comments
Κ	2324.0 3	(8-)		
J	2328.24 18	(9-)		
	2334.4 3			J π : (11-) proposed in figure 4 of 1977Je02 seems incorrect since 355.9 γ to (7-).
А	2372.74 24	12 +		
D	2446.14 19	(9-)		
Ι	2456.02 25	(9-)		
Е	2480.35 23	(9+)		
	2487.55 20			
F	2493.10 24	(11+)		
J	2564.34 20	(10-)		
	2711.4 3			
Ι	2731.3 <i>3</i>	(10-)		
D	2739.6 4	(10-)		
Е	2770.8 3	(10+)		g_{K} =+0.96 19 or -0.46 19 for I γ (558.2)/I γ (290.4)=0.57 30; +1.02 26 or -0.53 26 for I γ (558.2)/I γ (290.4)=0.48 30.
F	2776.2 3	(12+)		
J	2824.54 23	(11-)		
D	2980.64 22	(11-)		
Ι	3030.1 <i>3</i>	(11-)		
F	3079.4 <i>3</i>	(13+)		g_K =-0.27 13 (sign of mixing ratio is negative from $\gamma(\theta)$ data for 11+ to 10+ and 12+ to 11+ transitions in $K\pi$ =10+ band
J	3104.3 4	(12-)		12 + 10 + 11 + 110 + 10 + 0000
А	3112.8 <i>3</i>	(14+)		
F	3399.6 <i>3</i>	(14+)		
F	3736.6 11	(15+)		

[†] As proposed by 1977Je02 based on $\gamma(\theta)$ data, band assignments and previous assignments in β decay. The assignments are consistent with those in Adopted Levels, with only the difference of parentheses in a few cases.

$\underline{\gamma(^{182}W)}$											
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_{f}^{\boldsymbol{\pi}}$	E_{γ}	$\mathrm{I}_{\gamma}^{\dagger}$	Mult.	Comments				
100.11	2+	0.0	0+	100.1 1	35 3	а					
329.42	4+	100.11	2+	229.3 1	100	$(\mathbf{Q})^{ab}$					
680.47	6+	329.42	4+	351.1 <i>I</i>	80 6	$(\mathbf{Q})^{ab}$					
1144.47	8+	680.47	6+	464.0 1	48 4	$(\mathbf{Q})^{ab}$					
1221.50	2+	100.11	2+	1121.4 <i>I</i>	24.5 20						
		0.0	0+	1221.8 4	16.6 <i>13</i>						
1257.37	2+	329.42	4+	927.6 2	1.77 18						
		100.11	2+	1157.7 4	2.33 19						
		0.0	0+	1257.2 4	3.4 <i>3</i>						
1289.19	2-	100.11	2+	1189.1 2	10.3 8						
1331.19	3+	329.42	4+	1001.8 <i>1</i>	3.5 <i>3</i>						
		100.11	2+	1230.9 2	13.9 <i>11</i>						
1373.88	3-	1289.19	2-	84.7 <i>1</i>	3.8 <i>3</i>						
		1257.37	2+	116.4 2	0.54 4						
		1221.50	2+	152.4 <i>1</i>	10.0 10	D^c					
		100.11	2+	1273.9 4	2.9 5		I_{γ} : 0.94 expected from branching ratios in Adopted Gammas.				
1442.90	4+	329.42	4+	1113.5 <i>1</i>	5.6 5						
		100.11	2+	1342.3 2	5.2 4						
1487.55	4-	1373.88	3-	113.5 <i>1</i>	10.6 9	D^c					
		1331.19	3+	156.4 <i>1</i>	8.7 7	D^c					
		1289.19	2-	198.4 <i>1</i>	5.3 4						
1510.24	4+	329.42	4+	1180.5 4	3.2 3						
		100.11	2+	1410.9 5	0.77 16						
1553.25	4-	1373.88	3-	179.4 <i>1</i>	1.92 15						
		1331.19	3+	222.0 1	6.4 6						

						$\gamma(^{182})$	W) (continue
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Eγ	I_{γ}^{\dagger}	Mult.	Comments
		1289.19	2-	264.0 1	2.56 20	$(\mathbf{Q})^b$	
		100.11	2+	1454.3 5	1.75 19		
1621.34	5-	1510.24	4+	111.1 <i>3</i>	0.4 2		
		1487.55	4-	133.8 <i>1</i>	4.1 3	D^c	
		1442.90	4+	178.5 <i>1</i>	3.5 3	D^c	
		1373.88	3-	247.5 1	7.96	$(Q)^b$	
1623.62	5+	680.47	6+	943.3 4	0.89 18		
	-	329.42	4+	1293.9 4	5.1 4		
1660.45	5-	1553.25	4-	107.0 2	1.19 8		
		1510.24	4+	150.2 1	1.1 2		
		1487.55	4-	172.9 1	3.0 3	DC	
		1442.90	4+	217.5 1	2.03 10	D	
1710.10	10	1373.88	3-	286.6 1	2.2.3	$(\mathbf{Q})^{\nu}$	T
1/12.13	10+	1144.47	8+	567.5 1	22.2 18		I_{γ} : uncertain
1756.83	6	1442.00	4.	31363	041		others in th
1750.05	0+	680.47	4⊤ 6⊥	107641	60.41		
		329.42	<i>4</i> ⊥	1426.8.5	515		
1769.05	6-	1660.45	5-	108 4 2	403		
1707.00	0	1623.62	5+	145.4.2	2.3.5	D^c	
		1621.34	5-	147.8 1	2.5.5	2	
		1553.25	4-	215.4 1	3.3 3		
		1487.55	4-	281.5 1	5.1 4	$(\mathbf{O})^b$	
1809.85	5-	1553.25	4-	256.6 1	5.6 4		
1810.93	6-	1623.62	5+	186.7 2	0.56 8	D^c	
		1621.34	5-	189.6 <i>1</i>	1.2 <i>I</i>		
		1487.55	4-	323.4 1	5.5 5	$(\mathbf{Q})^b$	
1829.64	6-	1660.45	5-	169.2 <i>1</i>	4.0 3	$\widetilde{\mathbf{D}^c}$	
		1623.62	5+	206.1 2	0.46 7		
		1553.25	4-	276.4 1	1.90 20		
		1487.55	4-	341.6 <i>1</i>	1.72 14		
1917.24	7-	1621.34	5-	295.9 1	2.50 20	$(\mathbf{Q})^b$	
1960.41	7-	1829.64	6-	130.8 <i>1</i>	3.1 3	$D+Q^{c}$	
		1769.05	6-	191.4 <i>1</i>	2.9 2	D^c	
		1756.83	6+	203.6 1	1.62 13		
		1660.45	5-	299.8 2	1.90 20		
		1621.34	5-	339.1 <i>1</i>	2.78 22	$(Q)^{b}$	
1971.23	7+	1756.83	6+	214.4 <i>I</i>	5.4 4		
1978.52	(7-)	1829.64	6-	148.9 2	0.7 4		
		1769.05	6-	209.9 2	0.50 5		
		1/56.83	6+	221.2 2	1.50 15	(a) h	
1993.84	('/-)	1621.34	5-	372.5 1	2.74 22	$(\mathbf{Q})^{\nu}$	
2087.75	(0)	1/69.05	6-	318./1	5.6.5		
2114.50	(8-)	1960.41	/-	154.1 1	1.1 2	$D+Q^{c}$	
2120 59	(0)	1/69.05	6- 7	345.4 1	2.24 23	$(\mathbf{Q})^{\circ}$	
2120.58	(8-)	1960.41	/- 6	100.2 1	1.2 1	D+Q*	
2131.4	/-	1/09.05	0- (7)	302.4 3	1.30 13		
2204.72	(8-)	1976.32	(7-)	220.2 I 241.7 I	0.10 25721		
2212.93	(8)	1971.23	6	241.7 I 414.6 I	2.57 21	$(0)^{b}$	
2225.55	(0-)	1712 13	10	414.0 I 518 5 I	2.00 21	$(\mathbf{Q})^{a}$	$\alpha(\mathbf{K}) = 0$
2230.80	10+	1/12.13	10+	516.5 1	0.5 5	(1011)	Mult.: $\alpha(K)$
							M2+E3 (25
							or higher n
							expected to
		1144.45	0	1005 5 3	7.0 -		much smal
007 - 0	(0.)	1144.47	8+	1086.5 1	1.30	(o) h	
2274.2	(9-)	1917.24	7-	357.0 2	5.6 8	$(\mathbf{Q})^{\nu}$	

100 ued)

rtainty in table 1 of 1977Je02 seems too low to be consistent with the table. evaluators have increased this by a factor of 10.

=0.6 2 (1969No05).

(K)exp is consistent with M1, E1+M2 (50% admixture of both) or (25% M2+75% E3). The half-life of the 2230 level makes E3, M3 multipolarities unlikely. M2 is also unlikely since the transition is to be highly K-forbidden and the forbiddenness factor of 10³ is aller than expected for M2 transition and ΔK -L=6.

	χ^{182} W) (continued)									
E ^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Eγ	I_{γ}^{\dagger}	Mult.	Comments			
2324.0	(8-)	1917.24	7-	406.8 2	1.3 5					
2328.24	(9-)	2120.58	(8-)	207.7 1	1.32 11	$D+Q^c$				
		2114.50	(8-)	213.6 2	1.7 <i>3</i>	\mathbf{D}^{c}				
2334.4		1978.52	(7-)	355.9 2	3.2 6					
2372.74	12 +	1712.13	10 +	660.6 <i>1</i>	4.9 <i>4</i>					
2446.14	(9-)	1993.84	(7-)	452.3 1	2.12 17	$(\mathbf{Q})^b$				
2456.02	(9-)	2204.72	(8-)	251.3 <i>1</i>	5.8 5					
2480.35	(9+)	2212.93	(8+)	267.4 1	0.83 9					
2487.55		2087.75		399.8 <i>1</i>	5.6 5					
2493.10	(11+)	2230.80	10 +	262.3 1	4.6 4	$D+Q^{c}$				
2564.34	(10-)	2328.24	(9-)	236.1 <i>1</i>	2.12 21					
2711.4		2274.2	(9-)	437.2 <i>1</i>	2.76 22					
2731.3	(10-)	2456.02	(9-)	275.3 2	1.34 13	$D+Q^{c}$				
2739.6	(10-)	2225.53	(8-)	514.1 <i>3</i>	1.2 3					
2770.8	(10+)	2480.35	(9+)	290.4 2	1.5 3		$(g_{K}-g_{R})/Q_{0}=0.11$ 3 or 0.12 4 for I γ (558.2)/I γ (290.4)=0.57 30 or 0.48 30, respectively.			
		2212.93	(8+)	558.2 4	0.85 17	$(Q)^b$	· ·			
2776.2	(12+)	2493.10	(11+)	283.0 <i>1</i>	1.60 20	$D+Q^{c}$				
2824.54	(11-)	2564.34	(10-)	260.2 1	1.20 10	$D+Q^{c}$				
2980.64	(11-)	2446.14	(9-)	534.5 <i>1</i>	0.97 9					
3030.1	(11-)	2731.3	(10-)	298.8 <i>1</i>	1.2 3					
3079.4	(13+)	2776.2	(12+)	302 1	1.3 5	D^c	$(g_K-g_R)/Q_0=0.081 \ 20 \text{ for } I\gamma(586.0)/I\gamma(302.0)=0.2 \ 1.$			
		2493.10	(11+)	586.2 1	2.13 17	$(\mathbf{Q})^b$				
3104.3	(12-)	2824.54	(11-)	279.8 <i>3</i>	1.17 23					
3112.8	(14+)	2372.74	12 +	740.1 2	0.65 7					
3399.6	(14+)	3079.4	(13+)	320.2 2	1.10 20					
3736.6	(15+)	3399.6	(14+)	337 1	0.3 2					

100

[†] Large discrepancies between these values and the adopted branchings are observed. ^{*a*} K-conversion electron lines seen by 1969No05, also L-conversion for 100 γ and 229 γ . ^{*b*} Positive A₂ and magnitude consistent with Δ J=2, quadrupole (expected to be E2), since A₄ values are not available, these assignments are not considered as unique by the evaluators. ^c Negative A₂ indicates $\Delta J=1$, dipole or dipole+quadrupole (when magnitude of A₂> \approx 0.3). In the latter case the

transition is expected to be M1+E2.

¹⁸⁰**W(t,p)** 1980Mo11,1976Ca10

1980Mo11: E(t))=15 MeV, FWHM=20 keV. Measured $\sigma(\theta)$, multi-angle spectrograph and emulsion plates. 1976Ca10: E=15 MeV, measured $\sigma(\theta)$, Q3D spectrometer, FWHM=13 keV. Four excited states reported at 100, 329, 1221 and

1257. cross sections listed at seven angles from 15° to 60° .

0.0	 0	283 [@]	
98 <i>3</i> †	2 ^{&}	77	
327 <i>3</i> †		33	
1135 <i>5</i> ‡	0	147	E(level): this level is not seen by 1976Ca10.
1225 <i>5</i> †	2 ^{&}	41	· · · · · · · · · · · · · · · · · · ·
1266 <i>5</i> ‡		20	
1444 5 [‡]		10	

[#] From 1980Mo11 unless otherwise stated.

[@] From 1976Ca10.

[&] From 1976Ca10.

¹⁸²W(γ,γ):Mossbauer 1968Pe06,1965Ch14,1962Su14

Since 1960 many Mossbauer measurements have been reported for the first 2+ level in ¹⁸²W. These deduce various properties such as level width, lifetime, g factor, quadrupole moments, hyperfine structure, isomer shift, nuclear Zeeman effect, etc.
 References: 1993Wa05, 1975Bo38, 1973Ru01, 1973We20, 1973Zi02, 1973ZiZX, 1972He01, 1971Ob02, 1970Me09, 1969Ch23, 1969Fr19, 1968Pe06, 1965Sh04, 1965Ch14, 1963Da15, 1962Su14, 1961Ka25, 1959Le36.

¹⁸²W Levels

E(level)	J^{π}	Comments						
0 100	0+ 2+	g=+0.2605 & (1968Pe06), +0.23 & (1965Ch14). Γ (in eV)=0.34×10 ⁻⁶ (1965Sh04), 0.35×10 ⁻⁶ 9 (1962Su14), 0.34×10 ⁻⁶ 3 (1961Ka25), 0.73×10 ⁻⁶ (1959Le36).						
		$\underline{\gamma}^{(182}W)$						
		$\frac{\mathbf{E}_i^{level}}{100} \frac{\mathbf{J}_i^{\pi}}{2+} \frac{\mathbf{E}_f^{level}}{0} \frac{\mathbf{J}_f^{\pi}}{0+} \frac{\mathbf{E}_{\gamma}}{100}$						
		¹⁸² W(γ,γ') 1993He15						

1993He15: $E \approx 2.9$ -3.7 MeV bremsstrahlung radiation. Measured $E\gamma$, $I\gamma$, $\gamma\gamma(\theta)$, deduced g.s. transition widths.

				¹⁸² W Levels
E(level)	$J^{\pi \ddagger}$	$T_{1/2}^{\dagger}$	Cross section in eV.b	Comments
0.0	0+			
100	2+			E(level): rounded off value from Adopted Levels.
				J π : from Adopted Levels.
2382 1	1	7.9 fs 11	21.6 25	$\Gamma_{\gamma 0}$ (reduced)=0.00176 eV 25.
				B(M1)(\uparrow)=0.46 6. B(E1)(\uparrow)=5.0×10 ⁻⁵ 7.
2474 1	1#	15 fs 2	21.8 26	$\Gamma_{\gamma 0}$ (reduced)=0.00121 eV 17.
				$B(M1)(\uparrow)=0.31$ 5. $B(E1)(\uparrow)=3.5\times10^{-5}5.$
2884 1	1#	16 fs 2	20.9 23	$\Gamma_{\gamma 0}$ (reduced)=0.00085 eV 12.
				B(M1)(\uparrow)=0.22 3. B(E1)(\uparrow)=2.4×10 ⁻⁵ 3.
2892 1	(1)	27 fs 17	4.0 21	$\Gamma_{\gamma 0}$ (reduced)=0.00029 eV 18.
				$B(M1)(\uparrow)=0.07$ 4. $B(E1)(\uparrow)=0.8\times10^{-5}5$.
2941 2			10.0	
2996 I	1	6./ IS 13	13.2	$I_{\gamma 0}$ (reduced)=0.00094 eV 18.
				$B(M1)(\uparrow)=0.25$ 5. $B(E1)(\uparrow)=2.7\times10^{-5}$ 5.
2000 1	1#	$17 f_{0} 2$	12.2	K = (0) (1993He13).
5080 1	1	17 18 5	15.2	$\Gamma_{\gamma 0}(\text{reduced})=0.00050 \text{ eV}$ 11.
2162 1	1#	$10.2 f_{\pi} 14$	22.2.25	$D(M1)()=0.15 \ 5. \ B(E1)()=1.0 \times 10^{-5} \ 5.$
5105 1	1	10.5 18 14	22.2 23	$\Gamma_{\gamma 0}(\text{reduced})=0.00091 \text{ eV}$ 12.
2109 1	$(1, 2)^{\#}$	$16 f_{0} 2$	12 0 22	$D(M1)()=0.24$ 3. $D(E1)()=2.0 \times 10^{-4}$.
5198 1	(1,2)	10 18 5	12.8 22	$\Gamma_{\gamma 0}(\text{reduced})=0.00034 \text{ eV} 11.$
2265 1	1#	$11.1 f_{0}.22$	15.2	$D(M1)()=0.14$ 3. $D(E1)()=1.3 \times 10^{-5}$.
5505 1	1	11.1 18 25	15.5	$\Gamma_{\gamma 0}$ (reduced)=0.00000 eV 15.
2422 1	$(1, 2)^{\#}$	$10.2 f_{\pi} = 20$	10.2	$B(M1)()=0.174$. $B(E1)()=1.9\times10^{-4}4$.
34 <i>2</i> 2 1	(1,2)	10.5 18 20	19.5	$1_{\gamma 0}$ (reduced)=0.00072 eV 12.
2601 1	1#	$6.2 f_{0} = 12$	01.2	$D(M1)() = 0.19 \text{ J. } B(E1)() = 2.1 \times 10^{-5} \text{ 4.}$
5001 1	1	0.2 18 12	21.5	$\Gamma_{\gamma 0}(\text{reduced})=0.00089 \text{ eV}$ 16. $P(M1)(\Delta)=0.22.4$ $P(E1)(\Delta)=2.5\times 10^{-5.5}$
3640.2				$D(1V11)() = 0.25$ 4. $D(E1)() = 2.5 \times 10^{-5}$ 5.
3727 2				
3882 2				
3920 2	1			
 3163 <i>I</i> 3198 <i>I</i> 3365 <i>I</i> 3422 <i>I</i> 3601 <i>I</i> 3640 2 3727 2 3882 2 3920 2 	1 [#] (1,2) [#] 1 [#] (1,2) [#] 1 [#]	10.3 fs <i>14</i> 16 fs <i>3</i> 11.1 fs <i>23</i> 10.3 fs <i>20</i> 6.2 fs <i>12</i>	22.2 25 12.8 22 15 3 19 3 21 3	$\Gamma_{\gamma0}(\text{reduced})=0.00091 \text{ eV} 12.$ $B(M1)(\uparrow)=0.24 \ 3. \ B(E1)(\uparrow)=2.6\times10^{-5}4.$ $\Gamma_{\gamma0}(\text{reduced})=0.00054 \text{ eV} 11.$ $B(M1)(\uparrow)=0.14 \ 3. \ B(E1)(\uparrow)=1.5\times10^{-5}3.$ $\Gamma_{\gamma0}(\text{reduced})=0.00066 \text{ eV} 13.$ $B(M1)(\uparrow)=0.17 \ 4. \ B(E1)(\uparrow)=1.9\times10^{-5}4.$ $\Gamma_{\gamma0}(\text{reduced})=0.00072 \text{ eV} 12.$ $B(M1)(\uparrow)=0.19 \ 3. \ B(E1)(\uparrow)=2.1\times10^{-5}4.$ $\Gamma_{\gamma0}(\text{reduced})=0.00089 \text{ eV} 18.$ $B(M1)(\uparrow)=0.23 \ 4. \ B(E1)(\uparrow)=2.5\times10^{-5}5.$

 † Deduced from $\Gamma_{\gamma0}$ and branching ratio.

					<u>γ</u>	(¹⁸² W)					
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	Eγ	I_{γ}	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	Eγ	I_{γ}
2382	1	100	2+	2282 1	142 20	3198	(1,2)	100	2+	3098 1	59 21
		0.0	0 +	2382 1	100			0.0	0 +	3198 <i>1</i>	100
2474	1	100	2+	2374 1	66 14	3365	1	100	2+	3265 1	63 17
		0.0	0+	2474 <i>1</i>	100			0.0	0+	3365 1	100
2884	1	100	2+	2784 <i>1</i>	40 11	3422	(1,2)	100	2+	3322 <i>1</i>	53 15
		0.0	0+	2884 <i>1</i>	100			0.0	0+	3422 <i>1</i>	100
2892	(1)	100	2+	2792 1	150 90	3601	1	100	2+	3501 <i>1</i>	77 19
		0.0	0+	2892 1	100			0.0	0+	3601 <i>1</i>	100
2941		0.0	0+	2941 2		3640		0.0	0+	3640 2	
2996	1	100	2+	2896 <i>1</i>	168 35	3727		100	2+	3627 2	
		0.0	0+	2996 <i>1</i>	100			0.0	0+	3727 2	
3080	1	100	2+	2980 <i>1</i>	61 18	3882		100	2+	3782 2	
		0.0	0+	3080 1	100			0.0	0+	3882 2	
3163	1	100	2+	3063 1	54 12	3920	1	0.0	0+	3920 <i>2</i>	
		0.0	0+	3163 <i>1</i>	100						
				182	W(e,e')	1	987PeZ	V			

[‡] From $\gamma\gamma(\theta)$. The same assignments are the same in Adopted Levels. [#] K=1 (1993He15).

1987PeZV: E=75-345 MeV for scattering at 90° and 150-250 MeV for scattering	g at 45° . Measured cross sections at 45° and 90°
for E(e)=75-345 MeV, deduced form factors and charge densities. the grou	und state band observed up to 8+. Comparisons
with Hartree- Fock calculations and nuclear models (rotational model and I	IBA).

In table 6.1.1 of 1987PeZV, cross sections at 90° and 45° for 30 different electron energies are listed.

¹⁸² W Levels					
E(level) [†]	$J^{\pi \ddagger}$	Comments			
0	0+	RMS radius=5.361 fm 4 (1987PeZV). $d\sigma/d\Omega$ =1.55 mb/sr 4 at 45° and 148.35 MeV; 0.466 mb/sr 16 at 90° and 75.9 MeV. In table 6.1.1 of 1987PeZV, cross sections at 45° are listed for four higher (175-252 MeV) electron energies and at 90° for 24 higher (89-343 MeV) electron energies.			
100	2+	B(E2)=4.14 3 (1987PeZV). B(E2)=4.34 8 is also listed by 1987PeZV in table 6.1.3. $d\sigma/d\Omega$ =57.4 µb/sr 14 at 45° and 174.8 MeV; 33.7 µb/sr 16 at 90° and 75.9 MeV. In table 6.1.1 of 1987PeZV, cross sections at 45° are listed for three higher (199-252 MeV) electron energies and at 90° for 24 higher (89-343 MeV) electron energies			
329	4+	$d\sigma/d\Omega=5.3 \ \mu b/sr \ 7 \ at \ 45^{\circ}$ and 148.35 MeV; 0.62 $\ \mu b/sr \ 9 \ at \ 90^{\circ}$ and 88.97 MeV. In table 6.1.1 of 1987PeZV, cross sections at 45° are listed for four higher (174-252 MeV) electron energies and at 90° for 23 higher (89-343 MeV) electron energies.			
681	6+	$d\sigma/d\Omega=20$ nb/sr 6 at 90° and 127.0 MeV. In table 6.1.1 of 1987PeZV, cross sections are listed at 90° for 16 higher (140-329 MeV) electron energies.			
1144	8+	È(level): this level is close in energy of the first excited 0+ state at 1136, but 1987PeZV discuss that in (e,e'), the 0+ state is not expected to be populated, thus all of the 1144 peak is due to 8+. $d\sigma/d\Omega$ =2.1 nb/sr <i>10</i> at 90° and 155.85 MeV. In table 6.1.8 of 1987PeZV, cross sections are listed at 90° for seven higher (166-241 MeV) electron energies.			

[†] Rounded values from Adopted Levels. [‡] From Adopted Levels.

¹⁸²**W**(**n**,**n**^{\prime} γ) 1975De01

1975De01: E=fast reactor spectrum (energy range not specified). The decay scheme was derived by the authors by comparison with other experiments. Measured $E\gamma$, $I\gamma$ with a Ge(Li) detector. 1998Be62 (also 2000De59): measured $\gamma(\theta)$, deduced mixing ratios. this work is from the same laboratory as 1975De01.

¹⁸²W Levels

Nuclear Level Sequences

- А
- g.s. band. K π =0+ β band. В
- C $K\pi=2+\gamma$ band.
- D K π =2- octupole band.

Seq.	E(level) [†]	$J^{\pi\ddagger}$	Relative population intensity	Comments
A	0.0	0+		
А	100.09.9	2+	72×10^{1} 23	
A	329.44 13	4+	81 25	
A	680.49 16	6+	15 4	
B	1135.70 15	0+	13.4.75	
A	1144.4 4	8+	1.4.4	
C	1221.43 9	2+	30.8	
B	1257.48 11	2+	34.0 15	
D	1289.16 13	2-	44 7	
С	1331.14 12	3+	24 4	
D	1373.86 17	3-	20.5	
С	1442.97 17	4+	10 2	
D	1487.7 4	4-	12 6	
В	1510.22 19	4+	12 1	
	1553.0 2	4-	93	
D	1621.2 5	5-	8 <i>3</i>	
С	1623.3 <i>3</i>	(5)+	7.3 10	
	1660.2 <i>3</i>	5-	0.9 5	
	1756.3 4	6+	2.5 7	
	1765.44 24		4.8 10	$J\pi$: 3- (1975De01).
	1768.3 5	(6)-	1.5 5	
	1813.4 <i>3</i>			
	1833.1 6			
	1856.2 <i>3</i>	(2+)	5.3 13	$J\pi$: (1,2,3)+ (1975De01).
	1856.9 4	1	5.8 14	
	1871.2 <i>3</i>	1-	5.5 10	
	1887.87 <i>23</i>		3.7 5	$J\pi$: (3-) (1975De01).
	1918.6 4		4.7 7	Jπ: (2-) (1975De01).
	1959.31 <i>21</i>	(2+)	10.5 20	$J\pi$: 3+,(2+) (1975De01).
	1960.6 4	6-		
	1981.8 <i>3</i>		4.5 9	$J\pi$: (3+) (1975De01).
	2016.6 10		0.9 3	
	2023.2 5	(3-)	2.0 7	
	2057.4 10	1	≤ 1.8	$J\pi$: 1+ (1975De01).
	2110.3 8	(2-,3-)	≤ 2.0	$J\pi$: 1+ (1975De01).
	2116.1 6		2.3 5	$J\pi$: 2+ (1975De01).
	2143.1 4			
	2148.1 6	(3-)	2.1 4	$J\pi$: 2+ (1975De01).
	2173.9 5		1.8 4	$J\pi$: 2+,3- (1975De01).
	2183.6 5	(2-,3-)	3.0 15	$J\pi$: 2- (1975De01).
	2207.0 8	(3-)		
	2209.2 3	3-	3.6 7	$J\pi$: (2+) (1975De01).
	2239.5 10	(3+)	1.1 3	$J\pi: 0+ (1975De01).$
	2274.3 7	(3)-	2.3 6	
	2283.5 5	1	1.4 5	$J\pi$: 1+ (19/5De01).

[†] From least-squares fit to $E\gamma's$.
$\gamma(^{182}W)$

[‡] From Adopted Levels.

 $A_2 \mbox{ and } A_4 \mbox{ values are from 1998Be62}.$

\mathbf{E}_{i}^{level}	J_i^{π}	Eγ	$\mathrm{I}_{\gamma}^{\dagger}$	Mult. [‡]	δ	Comments
Unplaced		170.6 8	1.4 4			
		256.2 <i>3</i>	2.7 8			
		365.6 2	1.6 4			
		564.0 8	2.1 5			
		573.8 8	0.70 25			
		586.0 8	0.40 15			
		622.8 8	0.60 20			Placement: 1871.1 to 1257.4 (1975De01) is incorrect.
		678.2 6	0.88 25			
		738.1 10	0.40 20			
		/44.6 8	1.1 3			
		708.2.4	0.44 20			
		198.24	1.8 4			
		807.0 5	0.33 10			
		000.0 J 050.6 3	1.5.5			
		97914	0.90.25			
		1066.0.10	0.30 15			
		1088 6 4	0.50 15			
		1101.1.3	1.0.2			Placement: 1331.1 to 329.4 (1975De01) is incorrect.
		1438.1 4	1.5 3			
		1446.1 8	1.1 3			
		1468.0 10	1.0 3			
		1503.8 10	0.6 3			
		1510.4 10	0.6 3			
		1521.0 10	0.6 2			
		1538	< 0.15			
		1544.8 8	0.70 20			
		1588.7 <i>10</i>	0.7 3			
		1614.0 10	0.9 3			
		1649.7 <i>10</i>	0.6 2			
		1662.2 5	1.8 4			
		16/2.6 10	0.9 3			
		1/14.0 10	0.5 2			
		1/45.0 4	2.0 3			
		1835.0 20	0.50 20			
		1045.0 20	0.40 15			
		1990 7 8	0.0.3			
		2039 9 10	0.35.20			
		2067.0 10	1.1.4			
		2145.4 12	0.8.3			
		2185.4 10	1.2 3			
		2231.7 12	0.65 25			
		2294.7 12	0.9 <i>3</i>			
		2312.0 20	0.7 3			
		2428.6 10	1.2 4			
		2474.0 20	0.7 3			
		2635.0 15	0.4 2			
		2644.5 15	0.6 2			
		3093.0 20	0.5 2			
		3284.0 20	0.7 3			
100.09 329.44	2+ 4+	100.0 <i>3</i> 229.20 <i>15</i>	1.04×10 ³ 20 166 16	(Q) Q		Sign of A_4 should be negative for $\Delta J=2$, Q transition.

γ ⁽¹⁸²W) (continued) $\mathbf{E}^{level}_{:}$ J_i^{π} I_{γ}^{\dagger} Mult.[‡] Eγ δ Comments 680.49 6+ 351.04 10a 21 3 Q 1135.70 0 +1035.60 12 15.5 12 1144.4 8 +463.9 4 1.4 4 Q 1221.43 1121.32 8^a D+Q +25 + 10 - 82 +56 *3* 1221.45 10 44.0 20 (Q) 1257.48 2 +927.9 2 8.99 (Q) 1157.42 12 10.7 8 D+Q -7.9 +12-17 1257.45 15 16.9 8 Q 1289.16 2-67.8 5 1189.08 10 14.7 10 1289.5 8 1.5 4 (Q) 1331.14 3+ 1001.6 2 7.1 7 Q+D -25 +6-10 δ: from 2000De59. Other: -30 +20-30 (1998Be62). 1231.03 10 33.1 15 Q+D $+17 \times 10^{1} + 83 - 10$ $1/\delta = +0.006 + 8-5$ (2000De59). 1373.86 3-152.4 2 23 5 D(+Q)-0.03 + 4-6D+Q 1.3 2 +0.35 +5-3 1273.8 *3* 1442.97 4 +1113.5 3 9.7 10 D+Q +4.1 3 1342.8 2 5.0 5 Q 1487.7 4-156.5 4 10 3 D(+Q)-0.01 +3-4 1510.22 831.0 10 1.6 4 4 +1180.7 2 7.5 5 D+Q -1.11 +7-10 1410.4 3 3.7 4 Q 1553.0 4-178.2 5^e 6.4 20^e 221.7 3 4.5 15 D 264.0 2 1.7 3 Q 178.2 5^e 1621.2 5-6.4 20^e 1623.3 (5)+942.5 5 2.3 3 D+Q -2.9 3 1294.0 3 6.67 1660.2 5-286.3 2 0.70 20 1075.8 5 1.3 3 D+Q +2.50 +20-17 1756.3 6+ 1426.9 5 1.2 3 0 1765.44 434.3 2 1.6 4 544.20 15 3.3 5 1768.3 280.6 3 1.1 4 (6)-1813.4 524.2 3 1.63 1833.1 1733.0 6 1.3 3 $< 3^{b}$ 1856.2 (2+)598^c 0.30 15 1527.0 10 1756.1 3 5.0 12 1.5 5 1856.9 1 1757.0 6 1856.7 6 4.3 10 D 1871.2 1-1771.1 4 2.0 4 1871.1 5 2.1 4 D $1.0~3^e$ 556.7 3^e 1887.87 666.4 4 0.55 20 1558.5 4 1.2 3 4.7 7^e 1918.6 1818.5 4^e δ : for J(1919)=2, δ =+0.06 +11-6 or +2.0 4. 1959.31 (2+)449.8 *3* 0.9 4 (Q) 627.5 4 2.1 6 1629.8 2 4.2 6 δ: for J(1959)=3, δ =+0.01 +3-2 or -9 +2-4. Negative A₂ is inconsistent with $\Delta J=2$ transition. δ : for J(1959)=3, δ =+0.05 +7-8 or -5.0 +14-28. 1859.1 8 3.0 10 1960.2 10 0.58 20 1960.6 6-300.4 3 0.55 20 1981.8 650.7 3 1.0 3 723.8 7 0.44 15 1653.1 8 1.4 4 1881.8 8 1.7 3 1688.3 10^d 2016.6 0.9 3 1915.3 *12^d* 0.9 3

				1() (<u></u>
\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	Mult. [‡]	δ	Comments
(3-)	470.4 5	1.5.5			
(0)	733.5.8	0.40.20	D+O		δ : -0.10 +6-10 or -2.8 +6-7.
1	835.9 6 ^{ec}	$0.60\ 20^{e}$	2.4		
-	$1956.4 8^{c}$	1.8.5			
	2057.4 10	0.8.3	D		
(23-)	$556.7 3^{e}$	$1.0 3^{e}$	D+O		δ : for J(2110)=3. δ =-0.64 +4-7 or +12 +18-3
(_ ,=)					Assignment from 1998Be62.
	2010.2 8	0.36 20			
	2016.0 6	2.3.5			
	1813.6 10	1.5 5			
(3-)	817.0 10	0.55 20			
. ,	1818.5 4 ^{ec}	4.7 7 ^e			
	2048.0 8	2.1 4			
	2148 ^c	< 0.20			
	952.3 6	0.55 15			
	2074.0 8	1.3 3			
	2174 ^{ec}	$< 0.3^{e}$			
(2-,3-)	809.5 8	0.40 20			
	894.3 8	2.4 12			
	2084.2 10	0.20 10			
(3-)	1877.5 8	0.8 <i>3</i>	D+Q	-0.28 6	
3-	835.9 6 ^e	0.60 20 ^e			
	1879.6 <i>10</i>	0.6 6	D+Q		δ : -0.24 8 or -2.6 +10-5.
	2109.1 4	1.8 <i>3</i>			
	2208.8 6	1.4 3			
(3+)	2139.4 10	1.1 3			
(3)-	786.5 10	0.30 15			
	900.5 8	2.0 4			
	2174 ^{ec}	$< 0.3^{e}$			
1	909.7 6	0.9 4			
	2283.5 10	1.4 4	D		
	$\frac{J_{i}^{\pi}}{(3-)}$ 1 (2-,3-) (3-) (3-) (3-) (3-) (3-) 1 1	$\begin{array}{cccc} \underline{J}_{i}^{\pi} & \underline{E}_{\gamma} \\ \hline (3-) & 470.4 \ 5 \\ 733.5 \ 8 \\ 1 & 835.9 \ 6^{ec} \\ 1956.4 \ 8^{c} \\ 2057.4 \ 10 \\ (2-,3-) & 556.7 \ 3^{e} \\ \hline \\ & 2010.2 \ 8 \\ 2010.2 \ 8 \\ 2010.2 \ 8 \\ 2016.0 \ 6 \\ 1813.6 \ 10 \\ (3-) & 817.0 \ 10 \\ 1818.5 \ 4^{ec} \\ 2048.0 \ 8 \\ 2148^{c} \\ 952.3 \ 6 \\ 2074.0 \ 8 \\ 2174^{ec} \\ (2-,3-) & 809.5 \ 8 \\ 894.3 \ 8 \\ 2084.2 \ 10 \\ (3-) & 1877.5 \ 8 \\ 3- & 835.9 \ 6^{e} \\ 1879.6 \ 10 \\ 2109.1 \ 4 \\ 2208.8 \ 6 \\ (3+) & 2139.4 \ 10 \\ (3)- & 786.5 \ 10 \\ 900.5 \ 8 \\ 2174^{ec} \\ 1 & 909.7 \ 6 \\ 2283.5 \ 10 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

γ (¹⁸²W) (continued)

[†] Relative intensities normalized to 100 for γ 's (1121 γ and 1221 γ) from 1221 level.

[‡] 1998Be62 list mult=E2 and E1 or M1 for Q and D, respectively, listed here. The evaluators prefer the latter

* 1998Be62 list mult=E2 and E1 or M1 for Q and D, respectively, listed here. The evaluators prefer the latter terminology since since $\gamma(\theta)$ data are parity-insensitive. ^a 1975De01 take value from 1970Wh03 and use it as a calibration standard. ^b The quoted limit is lower than expected from branchings in in Adopted Gammas. The spectrum near 598 is dominated by impurity lines in $(n,n'\gamma)$. ^c Placement as given in table 2 of 1975De01, not shown in authors' table 1. ^d Placement as given in the text of 1975De01, not shown in authors' table 1. ^e Multiply placed with undivided intensity.

¹⁸²W(n,n') **1981De02,1982Gu18,1985An20**

1981De02: E(n))=3.4 MeV. Coupled channel and statistical model analysis. 1982Gu18: E(n))=0.3-5.0 MeV. Coupled channel and statistical model analysis. 1985An20: E(n))=4.87, 6.00 MeV. Coupled channel and rotational- vibrational model analysis. Other: 1967Li11.

		182W Leve	els_			
$E(level)^{\dagger}$	$J^{\pi \ddagger}$	Comments	$E(level)^{\dagger}$	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]
0	0 +		1229 12	2+	1492 15	1792 20
102 8	2+	$\beta_2 = 0.223, \beta_4 = -0.054.$	1281 22	2+	1539 16	1858 20
326 15	4+		1309 18		1618 24	1914 20
671 <i>14</i>	6+		1357 <i>21</i>		≈ 1678	1988 <i>21</i>
1138 16	0+		1428 <i>38</i>		1745 23	

[†] From 1982Gu18.

^{\ddagger} From angular distributions. Systematics of (n,n') show that only positive parity states are strongly populated. The assignments are the same in Adopted Levels.

[#] Derived from B(E2).

[@] From 1981De02.

182 W(p,p'),(pol p,p'),(α , α ') 1986Og02,1985La15,1975Le22

E(p))=65 MeV (1986Og02), E(pol p)=134 MeV (1985La15), $E(\alpha)$)=13-21 MeV. 1987Ic04 (also 1986Ic02): (pol p,p').

¹⁸²W Levels

E(level) [‡]	$\mathrm{J}^{\pi\dagger}$	Comments
0	0+	
100	2+	β_2 =0.204 5 (1985La15), 0.2256 (1986Og02), 0.206 (1975Le22).
329	4+	β_4 =-0.057 3 (1985La15), -0.0566 (1986Og02), -0.076 (1975Le22).
680	6+	$\beta_6 = 0.001 \ 2 \ (1985 La15), \ 0.0014 \ (1986 Og 02).$
1221	2+	
1380	3-	

[†] From Adopted Levels.

[‡] From 1985La15.

¹⁸²W(d,d') 1971Gu17

1971Gu17: E=12.08 MeV, magnetic spectrograph, nuclear emulsion plates.

		¹⁸² W Le	vels	
E(level)	J^{π}	E(level)	E(level)	E(level)
0.0		1257.4 [‡]	1860 7	≈2328
100.1‡		1373.8 [‡]	1889 7	≈ 2335
329.4 [‡]		1442.8 [‡]	1961 8	2607 10
680.5 [‡]		1623 5	2149 8	2725 11
1138 2	$0+^{\dagger}$	1661 5	2176 8	
1221.4 [‡]		1768 6	2208 9#	

[†] Assigned on the basis of energy and cross section.

[‡] Rounded values from Adopted Levels.

Multiplet.

Coulomb excitation 1991Wu05,1989Ku04,1971Mi08

1991Wu05 (also 1989Wu04): (58 Ni, 58 Ni' γ) E=235 MeV and (136 Xe, 136 Xe' γ) E=561 MeV. Measured γ , T_{1/2} by recoil-distance method (RDM), particle $\gamma(\theta)$. Deduced E2 transition and static matrix elements.

1989Ku04: $(^{208}\text{Pb}, ^{208}\text{Pb'}\gamma)$ E=4.9 MeV/nucleon. Measured γ , $^{208}\text{Pb-}\gamma$ coin., $(^{208}\text{Pb})(\gamma)(\theta)$. Deduced E2 matrix elements for g.s. band members up to 18+.

g.s. band memory up to 18+. 1979Hu01: $({}^{84}\text{Kr}, {}^{84}\text{Kr}'\gamma) E({}^{84}\text{Kr})=340 \text{ MeV.}$ 1977Mc11: $(\alpha, \alpha'\gamma) E(\alpha)$)=15 MeV. 1971Mi08: $({}^{16}\text{O}, {}^{16}\text{O}\gamma) E({}^{16}\text{O})=45.5 \text{ MeV}; (\alpha, \alpha'\gamma) E(\alpha)$)=15 MeV; $(p, p'\gamma) E(p)$)=5 MeV.

Others:.

1991St04 (also 1988St16,1988St09): $({}^{37}Cl,{}^{37}Cl'\gamma)$ E=115 MeV and $({}^{58}Ni,{}^{58}Ni'\gamma)$ E=160 MeV. Measured $\gamma(\theta,H,,T)$ using transient-field precession. Particle- γ coincidences.

1986Bi13: $({}^{32}S, {}^{32}S')$ E=100 MeV. Measured $\gamma\gamma(\theta)$ attenuation from recoil-in vacuum. Other references: 1975Le22, 1973Be40, 1968St13, 1965Eb03, 1964De07, 1964Al25, 1964Sc21, 1964Sp03, 1963Gr04, 1963Cr04, 1969De10, 1962Af01, 1962Go17, 1962Bi05, 1961Ha21, 1961Ke07, 1960An08, 1960El01, 1960Na13, 1959Bi10, 1958Al11, 1958Mc02, 1957Ch39, 1956Hu49, 1955Mc44.

¹⁸²W Levels

All the E2 transition matrix elements have positive sign (1991Wu05,1989Ku04).

B(E2) values given here are deduced from E2 transition matrix elements (experimental) of 1991Wu05 and 1989Ku04. B(E2)(from 8+,2180) to 10+ member of γ band=1.45 +12-32 (1991Wu05). The 10+ member is not identified experimentally.

E(level)	$J^{\pi +}$	$T_{1/2}$	Comments
0.0	0+	<u> </u>	
100.1	2+	1.373 ns 14	B(E2)=4.20 8.
			g=+0.23 <i>1</i> .
			B(E2): weighted average of 4.00 20 (1961Ha21), 4.58 40 (1963Gr04), 4.30 8 (1968St13), 4.21 7
			(1973Be40), 5.0 6 (1989Ku04), 3.76 <i>16</i> (1991Wu05).
			γ : average of measurements from 1965Eb03, 1964Sc21, 1963Kl04, 1963Ko02, 1962Go17, 1961Ke07.
			Static E2 matrix element= $-2.00 + 4-8$ (1991Wu05), $-2.12 + 23-21$ (1989Ku04).
			$I_{1/2}$: weighted average of 1.366 ns 14 (1961Ke07, $\gamma(t)$), 1.43 ns 4 (1962Bi05, $\gamma(t)$, earlier value was 1.55 ns
220.4	4 .	() == 3	14 (1959Bi10)) and 1.372 ns 14 (1964Sc21, pulsed beam in $(p,p'\gamma)$. B(E2)=4.20 8 gives 1.35 ns 4.
329.4	4+	62 ps 3	B(E2)=1.85 + 7 - 10 (1991 Wu05). B(E2): other values: 2.08, 15 (1071 Mi08), 2.20, 24 (1080 Ku04)
			Static F2 matrix element $-2.32 + 9.27$ (1991Wu05) $-1.64 + 64.17$ (1989Ku04)
			$T_{1/2}$: from RDM (1991Wu05) B(F2) gives 72 ps 4
680 5	6+	8.2 ns 9	R(F2) = 1.80.5 (1991Wu05)
000.0	01	0.2 ps >	B(E2): other values: 1.67 17 (1971Mi08), 1.91 10 (1979Hu01), 1.67 17 (1989Ku04).
			Static E2 matrix element=-3.09 +15-10 (1991Wu05), -1.55 +58-16 (1989Ku04).
			$T_{1/2}$: from RDM (1991Wu05). B(E2) gives 8.08 ps 18.
1144.5	8+	2.01 ps 17	B(E2)=1.59 + 8 - 6 (1991Wu05).
			B(E2): other values: 1.92 13 (1979Hu01), 1.74 18 (1989Ku04)
			Static E2 matrix element= $-4.10\ 20\ (1991Wu05),\ -1.52\ +16-79\ (1989Ku04).$
			$T_{1/2}$: from RDM (1991Wu05). B(E2) gives 2.10 ps 9.
1221.4	2+	0.434 ps 11	B(E2)(from 0+,g.s.)=0.106 3 (1991Wu05), 0.124 6 (1971Mi08).
			B(E2)(from 2+,100)=0.040 +3-1 (1991Wu05), 0.047 3 (1971Mi08).
			B(E2)(from 4+,329)=0.000121 +31-21 (1991Wu05).
			Static E2 matrix element=+1.94 +10-4 (1991 Wu05). T \rightarrow weighted every a of values deduced from $P(E2)$ (from a s)=0.106.3 and $P(E2)$ (from 2 + 100)=0.040
			$1_{1/2}$, weighted average of values deduced from $D(E_2)(1001 \text{ g.s.}) = 0.100 \text{ J}$ and $D(E_2)(1001 \text{ 2+},100) = 0.040 \text{ J}$
1257	2+	171 ns 13	$T_{1/2}$: from B(E2)(from 0+ σ s)=0.028.2 (1971Mi08) and adopted branching
1289	2-	1.71 ps 10	$1_{1/2}$. Hom $D(12)$ (Hom 0.15.0.)=0.020 2 (1) (11,100) and adopted branching.
1331.2	3+		
1374	3-		
1442.9	4+	0.32 ps 3	B(E2)(from 2+,100)=0.029 +3-2 (1991Wu05).
		-	B(E2)(from 4+,329)=0.060 4 (1991Wu05).
			B(E2)(from 6+,680)=0.016 +12-3 (1991Wu05).
			B(E2)(from 2+,1221)=1.03 +22-5 (1991Wu05).
			Static E2 matrix element=-1.66 <i>11</i> (1991Wu05).

Continued on next page (footnotes at end of table)

77

¹⁸²W Levels (continued)

E(level)	$J^{\pi\dagger}$	T _{1/2}	Comments
			$T_{1/2}$: from average of values deduced from B(E2)(from 2+,100) and B(E2)(from 4+). Branchings used from adopted gammas.
1623.6	(5)+		
1712.1	10+	0.76 ps 7	B(E2)=1.37 7 (1991Wu05).
		•	B(E2): other values: 1.84 15 (1979Hu01), 1.90 26 (1989Ku04)
			Static E2 matrix element=-4.75 +10-69 (1991Wu05), -5.82 59 (1989Ku04).
			T _{1/2} : from RDM (1991Wu05). B(E2) gives 0.85 ps 4.
1769.5	(6+)		B(E2)(from 4+,329)=0.025 +1-3 (1991Wu05).
			B(E2)(from 6+,680)=0.090 +3-10 (1991Wu05).
			B(E2)(from 8+,1144)=0.015 +6-10 (1991Wu05).
			B(E2)(from 4+,1443)=1.24 +25-5 (1991Wu05).
			Static E2 matrix element=-3.18 +10-46 (1991Wu05).
2180.5	(8+)		B(E2)(from 6+,680)=0.024 + 1-2 (1991Wu05).
			B(E2)(from 8+,1144)=0.134 + 15-17 (1991Wu05).
			B(E2)(from 10+,1712)=0.012 +10-8 (1991Wu05).
			B(E2)(from 6+,1769)=1.45 +7-32 (1991Wu05).
			Static E2 matrix element= $-4.6 + 3.4$ (1991Wu05).
2372.7	12 +	0.38 ps 2	B(E2)=1.40 + 9 - 5 (1991Wu05).
			B(E2): other values: $1.32 \ 33 \ (1979Hu01), \ 1.54 + 15-28 \ (1989Ku04).$
			Static E2 matrix element=-6.0 +7-4 (1991Wu05), -6.4 6 (1989Ku04).
			$T_{1/2}$: from B(E2).
3112.8	(14+)	0.24 ps 6	B(E2)=1.74 + 22 - 14 (1991Wu05).
			B(E2): other value: $0.99 + 22 \cdot 11$ (1989Ku04).
			$T_{1/2}$: average of values deduced from B(E2) from 1991Wu05 and 1989Ku04.
			Static E2 matrix element= $-6.1 + 29 - 15$ (1991Wu05), $-6.5 + 23 - 7$ (1989Ku04).
3909.8	(16+)	0.14 ps <i>3</i>	B(E2)=2.2+5-7 (1991Wu05).
			B(E2): other value: $1.04 + I6-2I$ (1989Ku04).
			Static E2 matrix element=- $6.1 + 8-10$ (1989Ku04).
			$T_{1/2}$: average of values deduced from B(E2) from 1991Wu05 and 1989Ku04.
4747.9	(18+)	0.088 ps +22-17	B(E2)=1.75 + 44 - 34 (1989Ku04).
			Static E2 matrix element= $-6.4 + 33-8$ (1989Ku04).
			$T_{1/2}$: from B(E2).

[†] Positive parity states from Coulomb excitation analysis. Negative parity levels are inferred from comparison with similar levels populated in ¹⁸⁴W and ¹⁸⁶W (1977Mc11). B(E3) values could not be inferred due to impurities in the γ -ray spectrum. All assignments are the same in Adopted Levels.

	$\underline{\gamma}^{(182}W)$							
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{\gamma}{}^{\$}$	$\mathrm{I}_{\gamma}{}^{\phi}$	Mult. †	δ^{\ddagger}	Comments
100.1	2+	0.0	0+	100.1		E2		
329.4	4+	100.1	2+	229.3		E2		
680.5	6+	329.4	4+	351.1		E2		
1144.5	8+	680.5	6+	464.0		E2		
1221.4	2+	100.1	2+	1121.3	100	M1+E2	+16 +16-7	
		0.0	0+	1221.4	123 4	E2		
1257	2+	329.4	4+	928 ^a	35 2	E2		
		100.1	2+	1157 ^a	72 5	M1+E2	-9 +3-6	
		0.0	0+	1257 ^a	100	E2		
1289	2-	100.1	2+	1189 ^a		(E1)		
1331.2	3+	100.1	2+	1231.1				
1374	3-	1289	2-	85 ^{ab}		(M1)		
		1221.4	2+	153 ^{ab}		(E1)		
1442.9	4+	329.4	4+	1113.5		$M1+E2^{c}$		
		100.1	2+	1342.8				
1623.6	(5)+	329.4	4+	1294.2				
1712.1	10 +	1144.5	8+	567.6		E2		

$\gamma(^{182}W)$	(continued)
-------------------	-------------

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\pmb{\pi}}$	$E_{\gamma}{}^{\S}$	I_{γ}^{ϕ}	Mult. [†]	δ^{\ddagger}	Comments
1769.5	(6+)	680.5	6+	1089.0		(M1+E2) ^c		
2180.5	(8+)	329.4 1144.5	$^{4+}_{8+}$	1440.1 1036.0		(M1+E2) ^c		
		680.5	6+	1500.0				
2372.7	12 +	1712.1	10 +	660.6		E2		
3112.8	(14+)	2372.7	12 +	740.1		(E2)		
3909.8	(16+)	3112.8	(14+)	797.0				
4747.9	(18+)	3909.8	(16+)	838.1				E_{γ} : from 1989Ku04.

[†] From Adopted Gammas unless otherwise stated.

[‡] From $p\gamma(\theta)$ and $\alpha\gamma(\theta)$ 1971Mi08.

[§] From 1991Wu05 unless otherwise stated. For the γ band, the γ -ray energies are deduced from the level energies given by 1991Wu05.

 ϕ Relative photon branching (1971Mi08).

^a From 1971Mi08, 1979Hu01.

^b Contamination from impurities partially obscure these transitions.

^c From B(E2) and B(M1) calculations (1991Wu05).

183 W(d,t) 1973Kl06

 $J\pi(^{183}W \text{ target})=1/2$ -.

E(d))=12.08 MeV, FWHM=7-8 keV. Measured $\sigma(\theta)$ at three angles 60°, 90° and 125°, broad-range magnetic spectrograph. Absolute cross section uncertainties are 20%.

182W Levels

Band assignments proposed by 1973K106 from comparison of calculated and Q-reduced experimental cross sections (finger-print method).

Nuclear Level Sequences

- K π =0+, g.s. band. K π =0+, β band. А
- В
- С K π =2+, γ band.
- $K\pi=2$ -, octupole band. D
- Probable $K\pi$ =4-, 9/2[624] \otimes 1/2[510]. Е
- Probable $K\pi = 5-$, $9/2[624] \otimes 1/2[510]$. F
- G Possible K π =6-, 9/2[624] \otimes 3/2[512].
- Η Possible K π =1+, 1/2[521] \otimes 1/2[510].
- Possible K π =0+, 1/2[521] \otimes 1/2[510]. Ι
- Probable K π =2+, 3/2[512] \otimes 1/2[510]. J
- Probable K π =1+, 3/2[512] \otimes 1/2[510]. Κ

Seq.	E(level) [†]	$J^{\pi \ddagger}$	L [#]	$d\sigma/d\Omega$ (90°) ($\mu b/sr$) ^a	Comments
A	0	0+		4	
А	100 2	2+	1,3	169	
А	329 2	4+	3	39	
А	≈ 678	6+	>3	1.8	
В	≈ 1137	0+		0.9	
С	1221 <i>3</i>	2+	1,3	3	
В	1258 <i>3</i>	2+	1,3	11	
D	≈ 1288	2-		0.6	
С	1331 <i>3</i>	3+	3	36	
С	1442 4	4+	3,>3	4	
В	1510 4	4+	3,>3	8	
E	1553 4	4-	4	5	
С	1623 5	5+	(4)	2.1	$J\pi$: (5)+ in Adopted Levels.

Seq.	$E(level)^{\dagger}$	$J^{\pi \ddagger}$	L#	$\mathrm{d}\sigma/\mathrm{d}\Omega~(90^\circ)~(\mu\mathrm{b/sr})^a$	Comments
Е	≈1664	5-	(4)	2.1	
Е	1768 5	6-	6	14	$J\pi$: (6)- in Adopted Levels.
F	1811 6	5-	4	11	
G	1831 6	6-	(6)	5	
J	1857 6	2+	(1,3)	19	J π : (2+) in Adopted Levels.
Е	1916 6	7-	6	16	J π : (7)- in Adopted Levels.
	1923 6			≤ 4	
Κ	$\approx 1957^{@}$	3+		≈ 21	J π : (2+) in Adopted Levels.
Κ	$\approx 1961^{@}$	6-	6	≈12	-
Κ	$\approx 1966^{@}$			≈ 21	
	1985 6			≈ 5	
	2016 7		1,3	8	
Κ	2057 7 [@]	1 +	1.3	11	
	≈ 2071		y -	≈ 3	
J	≈ 2086	4+		5	
Н	$\approx 2110^{\&}$	1 +	1	107	
F	2131 7	7-	6	12	
К	$\approx 2148^{@\&}$	2+		22	
	2171 7		3.1	17	
	2204 7		3,>3	13	
	≈ 2217		<i>,</i>	7	
Ι	$\approx 2240^{\&}$	(0,1)+	1	127	
	≈ 2270			≈ 3	
Ι	$\approx 2284^{\&}$	(0,1)+	1	147	
	$\approx 2322^{\&}$		3	>61	
	2359 8		3	$\bar{22}$	
	≈ 2376		4	≈ 37	
	≈2384		1,3	≈ 26	
	2395 8		3,1	38	
	2427 8 ^{&}		3	18	
	2453 8		3,>3	62	
	2471 8		3	14	
	2492 8			16	

¹⁸²W Levels (continued)

[†] Uncertainty for well-resolved peaks is quoted by 1973Kl06 as ranging from 2 keV for levels below 1200 to 8 keV at 2500. The evaluators have assigned 3 keV for levels 1221-1331, 4 keV for levels 1442-1553, 5 keV for level 1623-1768, 6 keV for levels 1811-1985, 7 keV for levels 2131-2204 and 8 keV for levels above 2204.

[‡] As proposed by 1973Kl06 based on L-transfers and band assignments. The corresponding assignments are different in some cases in Adopted Levels.

[#] Approximate assignments within one unit from cross section data at three angles: 60° , 90° , and 125° .

^(a) Component of a composite peak, resolved with difficulty.

[&] Multiplet.

^{*a*} Q-reduced Cross sections at 90°. Experimental cross sections are listed by 1973Kl06 at 60° , 90° and 125° .

¹⁸³W(³He,α) 1973Kl06

1973Kl06: E(³He)=20.3 MeV, FWHM=30 keV. Measured cross sections at 60°, broad-range magnetic spectrograph. Absolute cross section uncertainties are 20%.

		¹⁸² W Levels
E(level) [†]	$J^{\pi \ddagger}$	$d\sigma/d\Omega~(60^\circ)~(\mu b/sr)$
100 2	2+	0.8
329 2	4+	0.6
1331 <i>3</i>	3+	1.1
1768 5	(6)-	8

¹⁸²W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$d\sigma/d\Omega~(60^\circ)~(\mu b/sr)$
1831 6	6-	2.1
1916 6	(7)-	8
≈ 1961	6-	7
2131 7	(7-)	≈ 6

[†] From ¹⁸²W(d,t) (1973Kl06). [‡] From Adopted Levels.

¹⁸⁴W(p,t) 1980Mo11

1980Mo11 (also 1977Mo15): E(p))=21 MeV, E(t))=15 MeV, FWHM=20 keV. Measured $\sigma(\theta)$, multi-angle spectrograph and

emulsion plates. 1972Ma15: E=17 MeV. Measured $\sigma(\theta)$. Five groups reported at 0, 100, 328, 1137 and 1225. 1970Ku06: E=51.7 MeV. Analyzed $\sigma(\theta)$ data, deduced Y₄ deformation parameter.

¹⁸²W Levels

E(level)	L	$d\sigma/d\Omega$ (max) (μ b/sr)	E(level)	$d\sigma/d\Omega$ (max) ($\mu b/sr$)	E(level)	$d\sigma/d\Omega$ (max) (μ b/sr)	E(level)	L	$d\sigma/d\Omega$ (max) (μ b/sr)
0.0	0#	700	1626 5	3	2117 10	3	2520 <i>10</i> [†]	0	14
100 5		200	1663 5^{\dagger}	5	2154 10	14	2552 10	0	10
330 5		26	1767 5^{\dagger}	15	2175 10	17	$\approx 2625^{\ddagger}$		30
690 5		6	1814 5	2	2209 10	15	2689 10		12
1135 5	$0^{\#}$	100	1824 5	8	2251 10	4	2725 10	0	22
1219 5		60	1853 5	8	2278 10	14	2775 10		10
1266 5		12	1890 5	20	2311 <i>10</i> [†]	13	2815 10		5
1372 5		7	1961 5 [†]	22	2331 <i>10</i> [†]	7			
1444 5		12	2094 10	5	2363 10	34			

[†] Doublet.
[‡] Multiplet.
[#] Also from 1972Ma15.

¹⁸⁶W(n,5nγ) 2000Ya22

2000Ya22: E=250-600 MeV spallation neutrons at WNR facility at LANSCE. Measured E γ , I γ , $\gamma\gamma$ using GEANIE array of HPGe and LEPS detectors including four HPGe detectors in close geometry.

182W Levels

Nuclear Level Sequence

A g.s. band.

Seq.	E(level)	$J^{\pi\dagger}$
A	0	0+
А	100	2+
А	329	4+
А	680	6+
А	1144	8+
А	1712	10 +
А	2374	$12 \pm$

[†] From Adopted Levels.

$\underline{\gamma^{(182}W)}$					
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	E_{γ}	Comments
100	2+	0	0+	100	E_{γ} : rounded energy from Adopted Gammas.
329	4+	100	2+	229	
680	6+	329	4+	351	
1144	8+	680	6+	464	
1712	10 +	1144	8+	568	
2374	12+	1712	10 +	662	